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Abstract

We present an iterative algorithm for enforcing policies represented in a first-order logic,
which can, in particular, express all transmission-related clauses in the HIPAA Privacy Rule.
The logic has three features that raise challenges for enforcement — uninterpreted predicates
(used to model subjective concepts in privacy policies), real-time temporal properties, and quan-
tification over infinite domains (such as the set of messages containing personal information).
The algorithm operates over audit logs that are inherently incomplete and evolve over time.
In each iteration, the algorithm provably checks as much of the policy as possible over the
current log and outputs a residual policy that can only be checked when the log is extended
with additional information. We prove correctness and termination properties of the algorithm.
While these results are developed in a general form, accounting for many different sources of
incompleteness in audit logs, we also prove that for the special case of logs that maintain a
complete record of all relevant actions, the algorithm effectively enforces all safety and co-safety
properties. The algorithm can significantly help automate enforcement of policies derived from
the HIPAA Privacy Rule.

1 Introduction

Organizations, such as hospitals, banks, and universities, that collect, use, and share personal in-
formation have to ensure that they do so in a manner that respects the privacy of the information
subjects. In fact, designing effective processes to audit transmission and access logs to ensure
compliance with privacy regulations, such as the Health Insurance Portability and Accountability
Act (HIPAA) [32], has become one of the greatest challenges facing organizations today (see, for
example, a recent survey from Deloitte and the Ponemon Institute [15]). State-of-the-art commer-
cial tools such as the FairWarning [1] allow auditors to mine access and transmission logs and flag
potential violations of policy, but do not help decide which flagged items are actual violations, even
though privacy legislation often lays down objective criteria to make such decisions. We address

∗This work was partially supported by the U.S. Army Research Office contract ”Perpetually Available and Secure
Information Systems” (DAAD19-02-1-0389) to Carnegie Mellon CyLab, the NSF Science and Technology Center
TRUST, the NSF CyberTrust grant Privacy, Compliance and Information Risk in Complex Organizational Processes,
the AFOSR MURI Collaborative Policies and Assured Information Sharing, and HHS Grant no. HHS 90TR0003/01.
The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.
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this challenge by developing a novel, logic-based method for computer-assisted enforcement of poli-
cies. This method can be used to enforce a rich class of privacy and security policies that include,
in particular, real privacy regulations like HIPAA.

Policy Specification The first challenge for policy enforcement is formal specification of real
policies. This challenge was addressed in our prior work on PrivacyLFP [16], an expressive first-
order temporal logic, in which we represented formally all transmission-related clauses of the HIPAA
and GLBA Privacy Laws. PrivacyLFP is more expressive than prior logics considered for expressing
policies, including propositional temporal logics [8, 18] and first-order metric temporal logic [10].

Building on the prior work on specification of privacy laws in PrivacyLFP, this paper presents
an algorithm for enforcing policies represented in the logic, through iterative analysis of audit logs,
which we assume are collected independently and provided to us. The policy enforcement algorithm
and the formulation and proof of its properties are the main contribution of this paper.

Three concepts in privacy legislation (and PrivacyLFP) make mechanical enforcement partic-
ularly difficult; we discuss these concepts briefly. First, PrivacyLFP includes uninterpreted or
subjective predicates to model subjective parts of privacy laws. For example, HIPAA allows trans-
mission of protected health information about an individual from a hospital to a law enforcement
agency if the hospital believes that the death of the individual was suspicious. Such beliefs are
represented using uninterpreted predicates because the truth value of these predicates cannot, in
general, be determined mechanically.

Second, PrivacyLFP allows first-order quantification over infinite domains (e.g., the set of mes-
sages or the set of time points). For example, many HIPAA clauses are of the form
∀p1, p2,m.(send(p1, p2,m) ⊃ φ) where p1 and p2 are principals and m is a message. Note that
this formula quantifies over the infinite set of messages, so if an enforcement algorithm were to
blindly instantiate the quantifiers with all possible values in the domain, then it will not terminate.
However, only a finite number of messages are relevant in determining the truth value of this for-
mula. This is because the number of messages transmitted from a hospital is finite and hence the
predicate send(p1, p2,m) is true for only a finite number of substitutions for the variable m (and
similarly for p1 and p2). To ensure that the number of relevant substitutions for every quantified
variable is finite, we use the idea of mode checking from logic programming [4], and restrict the syn-
tax of quantifiers in PrivacyLFP slightly. The finite substitution property for quantified variables
over infinite domains is defined in Section 4, and ensures termination of our policy enforcement
algorithm. The restriction on quantification does not significantly limit representation of HIPAA
clauses, a claim we justify in Section 6.

Third, the representation of one transmission-related clause – Section 6802(c) – of the GLBA
Privacy Law forces PrivacyLFP to include fixpoint operators. In this paper, we do not consider
fixpoints because the representation of most privacy legislation including all of HIPAA does not
require fixpoints. We note that including the least fixpoint operator in our algorithm may not be
difficult, but supporting the greatest fixpoint may require a substantial effort.

Audit logs Another significant challenge in mechanical enforcement of privacy policies is that the
logs maintained by organizations may be incomplete, i.e., they may not contain enough information
to decide whether or not the policy has been violated. For instance, in the absence of human input,
a machine may not be able to decide whether any instance of a predicate that refers to subjective
beliefs is true or not. Similarly, we may not be able to predict whether a predicate holds in the
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future or not. As an important contribution, we observe that such possibly incomplete logs can be
abstractly represented as three-valued, partial structures that map each atomic formula to either
true, false, or unknown [13, 19]. We define the semantics of our logic over such structures. Further,
by designing our enforcement algorithm to work with partial structures in general, we provide a
uniform account of policy enforcement with different forms of log incompleteness.

We explicitly discuss in Section 5.2 a special case of partial structures that are complete up to
a point of time. This instance corresponds to the standard model of traces used in prior work on
enforcement of temporal privacy properties [10]. We show that on such structures, our algorithm
yields a method to find violations of safety properties [2] and satisfactions of co-safety properties [11]
at the earliest possible time, as may be expected.

A second important observation is that, in practice, structures evolve over time by gathering
more information. We formalize this growth as a natural order, L1 ≥ L2 (structure L1 extends
structure L2), meaning that L1 has more information than L2. We present a general definition of
extension of partial structures, which encompasses, in particular, notions of temporal (actions are
added to the end of a trace) and spatial (distributed logs are merged) extensions.

Policy Enforcement As our central contribution, we propose an iterative process for privacy
policy enforcement. At each iteration, our algorithm takes as inputs a structure L abstracting the
then-current audit log and a policy specification ϕ, verifies parts of the policy that depend solely
on the given structure, and outputs a residual policy ϕ′ that contains all the conditions that need
to be verified when more information becomes available. We write reduce(L, ϕ) = ϕ′ to denote one
iteration of our reduction algorithm. The residual policy ϕ′ is checked on extensions of L.

Our reduction algorithm has several desirable properties that we prove formally. First, the algo-
rithm always terminates. As noted earlier, the finite substitution property for variables quantified
over infinite domains is crucial for termination. Second, it is correct : given a structure L and a
policy ϕ, any extension of L satisfies the policy ϕ if and only if it satisfies the residual formula
ϕ′. Third, it is minimal : the residual formula only contains atoms whose truth value cannot be
determined from the structure.

Our algorithm has been designed for after-the-fact (a-posteriori) audit, not runtime verification.
However, as shown in Section 5.2, for the specific case of policies that do not contain any subjective
predicates or future obligations, the algorithm may be executed at each privacy-relevant event to
act as a runtime monitor, if all relevant past system logs can be provided to it.

Application to HIPAA Our technical results have important implications for enforcing prac-
tical privacy policies, in particular, the HIPAA Privacy Rule. As discussed in Section 6, not only
can our algorithm be used to automatically instantiate all quantifiers in all 84 transmission-related
clauses of HIPAA, but it can also automatically discharge the large percentage of non-subjective
atoms in instantiated clauses. For example, we estimate that in 17 of the 84 clauses, all atoms can
be discharged automatically, and in 24 other clauses, at least 80% of the atoms can be discharged
automatically.

Summary of Contributions In summary, the contributions of this paper are:

• An iterative algorithm for enforcing policies represented in PrivacyLFP, a rich logic with
quantification over infinite domains, and formulation and proofs of the algorithm’s properties
(Section 4)
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Objective predicates pO
Subjective predicates pS
Objective atoms PO ::= pO(t1, . . . , tn)
Subjective atoms PS ::= pS(t1, . . . , tn)
Formulas α, β ::= PO | PS | > | ⊥ |

α1 ∧ α2 | α1 ∨ α2 | ¬α |
∀~x.(c ⊃ α) | ∃~x.(c ∧ α) |
↓x.α | α Sβ | αUβ |
`α | 0α

Restrictions c ::= PO | > | ⊥ | c1 ∧ c2 |
c1 ∨ c2 | ∃x.c

Figure 1: Timed First-order Temporal Logic with Restricted Quantifiers

• Use of mode analysis from logic programming to ensure that infinite quantifiers result only
in a finite number of relevant substitutions (Section 4)

• A formal model of incomplete audit logs as three-valued structures (Section 3)

Organization In Section 2, we review PrivacyLFP to the extent needed for this paper. Section 3
presents partial structures and defines the semantics of PrivacyLFP over them. Section 4 presents
our policy enforcement algorithm and its properties. Section 5 discusses the behavior of our algo-
rithm on structures that are complete and those that are complete up to a point of time. In the
latter case, we also present associated results about enforcement of safety and co-safety properties.
Section 6 describes how the work in this paper applies to the HIPAA Privacy Rule. Section 7
provides a detailed comparison with related work and Section 8 presents conclusions and directions
for future work.

2 Policy Logic

We use PrivacyLFP [16] to represent policies, but restrict the syntax of first-order quantifiers slightly
to facilitate enforcement and drop fixpoint operators. PrivacyLFP consists of an outer policy logic
with connectives of temporal logic and an inner, equally expressive sublogic without connectives
of temporal logic to which the outer syntax is translated. Our enforcement algorithm works only
with the inner sublogic. In this section we review both the outer syntax and the sublogic, as well
as the translation.

2.1 Syntax of the Policy Logic

The syntax of our policy logic is shown in Figure 1. We distinguish two classes of predicate symbols:
1) objective predicates, denoted pO, that can be decided automatically using information from logs
or using constraint solvers and 2) subjective predicates, denoted pS , that require human input to
resolve. Both classes of predicates are illustrated in examples later. An atom is a predicate applied
to a list of terms (terms are denoted t). Based on the class of its predicate, an atom is also classified
as either objective or subjective, written PO and PS , respectively.
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Propositional connectives > (true), ⊥ (false), ∧ (conjunction), ∨ (disjunction), and ¬ (negation)
have their usual meanings. Anticipating the requirements of the enforcement algorithm of Section 4,
first-order quantifiers ∀~x.(c ⊃ α) and ∃~x.(c ∧ α) in the logic are forced to include a formula c called
a restriction. By definition, ∀x.(c ⊃ α) is true iff all instances of ~x that satisfy c, also satisfy
α. (∃~x.(c ∧ α) has a similar definition.) To make enforcement tractable, we require that the set
of instances of ~x satisfying c be computable. This is ensured by limiting c to a reduced class of
formulas that, in particular, excludes subjective predicates (see the syntax of c in Figure 1), and
through a static analysis that we describe in Section 4.

Further, our logic includes standard connectives of linear temporal logic (LTL) [23] that provide
quantification over the sequence of states in a system, relative to a current state: α Sβ (β holds
at some state in the past and α holds since then), αUβ (β holds at some state in the future and
α holds until then), `α (α holds at all states in the past) and 0α (α holds at all states in the
future). Other temporal operators can be defined, e.g.,Qα = >Sα (α holds at some state in the
past) and1α = >Uα (α holds at some state in the future).

Finally, to represent clock time, which often occurs in privacy policies, we assume that each
state of a system has a time point associated with it. Time points, denoted τ , are elements of
T = {x ∈ R | x ≥ 0} ∪ {∞}. They measure clock time elapsed from a fixed reference point and
order states linearly. Relations between time points are captured in logical formulas using the freeze
quantifier ↓x.α of timed propositional temporal logic (TPTL) [3], which means “α holds with the
current time bound to x.” (Examples below illustrate the quantifier.) Since we have no occasion
to reason explicitly about states, we identify a state with the time point associated with it, and
use the letter τ and any of the terms “state”, “time point”, “time”, and “point” to refer to both
states and time points. We make the assumption that on any trace there are only finitely many
time points between two given finite time points.

We illustrate the syntax of our logic through two examples that are based on the formalization
of HIPAA in PrivacyLFP. These examples are also used later in the paper.

Example 2.1. As a first example, we represent in our logic the following policy about disclosure
(transmission) of health information from one entity (e.g., a hospital or doctor) to another.

An entity may send an individual’s protected health information (phi) to another entity
only if the receiving entity is the patient’s doctor and the purpose of the transmission
is treatment, or the individual has previously consented to the transmission.

Our formalization assumes that each transmitted message m is tagged by the sender (in a
machine-readable format) with the names of individuals whose information it carries as well the
attributes of information it carries (attributes include “address”, “social security number”, “medi-
cations”, “medical history”, etc.). The predicate tagged(m, q, t) means that message m is tagged
as carrying individual q’s attribute t. Tagging may or may not reflect accurately the content of the
message. Similarly, we assume that each message m is labeled in a machine readable format with a
purpose u (e.g., “treatment”, “healthcare”, etc.). This is represented by the predicate purp(m,u).
Because we assume that name and attribute tags as well as purpose labels are machine readable,
both tagged and purp are objective predicates – their truth or falsity can be checked using a
program.

Attributes are assumed to have a hierarchy, e.g., the attribute “medications” is contained
in “medical history”. This is formalized as the predicate attr in(medications,medical-history).
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We assume that the hierarchy can be mechanically checked, so attr in is an objective predi-
cate. The predicate purp in(u, u′) means that purpose u is a special case of purpose u′, e.g.,
purp in(surgery, treatment). In contrast to attributes, we assume that the purpose hierarchy can-
not be computed, so purp in is a subjective predicate. In an enforcement system, it must be
checked through human input.

Finally, each action or fact that can be recorded in a system log (such as sending a message
or that Alice is in role doctor) is represented as an objective predicate. For this example we need
three objective predicates: send(p1, p2,m) meaning that entity p1 sends message m to entity p2,
consents(q, a) which means that individual q consents to the action a, and inrole(p, r) which
means that principal p is in role r. Here, the only action consented to is sendaction(p1, p2, (q, t)),
which corresponds to p1 sending to p2 a message containing information about q’s attribute t.

The above policy can be formalized in our logic as follows.

αpol1 =
∀p1,p2,m, u, q, t. (send(p1, p2,m) ∧ purp(m,u) ∧

tagged(m, q, t) ∧ attr in(t, phi))
⊃ (inrole(p2, doc(q)) ∧ purp in(u, treatment))
∨Qconsents(q, sendaction(p1, p2, (q, t)))

In words, if entity p1 sends to entity p2 a message m, m is tagged as carrying attribute t
of individual q, where t is a form of phi (protected health information), and m is labeled with
purpose u, then either p2 (the recipient) is a doctor of q (atom inrole(p2, doc(q))) and u is a
type of treatment, or q has consented to this transmission in the past (last line of αpol1). The
temporal operatorQ is used to indicate that the consent may have been given by q in some earlier
state. Also, the universal quantifier in the formula above carries a restriction (send(p1, p2,m) ∧
purp(m,u) ∧ tagged(m, q, t) ∧ attr in(t, phi)), as required by our syntax. The technical reason
for including restrictions is explained in Section 4.

Example 2.2. Our next example is a policy governing entity response to an individual’s request
for her own information.

If an individual requests her information from an entity, then some administrator in the
records department of the entity must respond to the individual at the earliest feasible
time, but not later than 30 days after the request.

To represent this policy we need one more objective predicate, req(p, t), which means that
individual p requests information about attribute t from her record. Further, we need two new sub-
jective predicates: contains(m, q, t) (message m contains attribute t of individual q) and ftr(p, t)
(it is feasible to respond to individual p with attribute t at the current time). The latter clearly
requires human input to resolve, because “feasibility” cannot be defined mechanically, while the for-
mer requires human input because we assume that message payloads may contain natural language
text.

The logical specification of this policy is shown below:

αpol2 =
↓τ.∀p,t. req(p, t)

⊃ ¬ftr(p, t)

U ↓τ ′. in(τ ′, τ, τ + 30)

6



∧ ∃q,m. (inrole(q, records) ∧ send(q, p,m) ∧
contains(m, p, t))

The top-most quantifier ↓τ binds τ to the time at which a request occurs and, similarly, ↓τ ′
binds τ ′ to the time at which a response is sent. in(τ ′, τ, τ + 30), formally explained in Section 2.2,
implies that τ ′ ≤ τ + 30, thus enforcing the constraint that the response be sent within 30 days of
the request, as required by the policy. The until operator U is used to include the obligation that
it be infeasible to respond until the response is actually sent.

2.2 Translation to a Smaller Syntax

Policies expressed in PrivacyLFP’s outer syntax can be translated into a smaller sublogic without
temporal connectives and negation. This smaller syntax of formulas ϕ,ψ of the sublogic is shown
below. Other syntactic categories such as restrictions c are not changed.

Formulas ϕ ::= PO | PS | > | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
∀~x.(c ⊃ ϕ) | ∃~x.(c ∧ ϕ)

We surmount the absence of negation in the sublogic by defining for each formula ϕ a dual ϕ
that behaves exactly as ¬ϕ would. For defining duals of atoms, we assume that each predicate p
has a dual p such that p(t1, . . . , tn) is true iff p(t1, . . . , tn) is false (the relation between p and p is
formalized in Section 3). We define ϕ by induction on ϕ, as in the representative clauses below (for
the remaining clauses see Appendix A).

pO(t1, . . . , tn) = pO(t1, . . . , tn)

ϕ ∧ ψ = ϕ ∨ ψ
∀~x.(c ⊃ ϕ) = ∃~x.(c ∧ ϕ)

∃~x.(c ∧ ϕ) = ∀~x.(c ⊃ ϕ)

Temporal connectives are translated to the sublogic by making time points (states) and the
ordering relation between them explicit in first-order formulas in a standard way (see [16]). Briefly,
we assume that for every predicate symbol in the logic there is a predicate of the same name
in the sublogic, but with one extra argument of type time: p(t1, . . . , tn, τ) in the sublogic means
that p(t1, . . . , tn) holds at time τ in the logic. Further, assume that the new objective predicate
in(τ, τ1, τ2) means that τ is an observed time point (in the trace of interpretation) satisfying
τ1 ≤ τ ≤ τ2. Finally, let Ξ[~t/~x] denote the result of substituting the terms ~t for variables ~x in the
syntactic entity Ξ. Then, representative clauses of the translation (•)τ of restrictions and formulas
of the logic to those of the sublogic, indexed by a “current time” τ , are shown below (the full
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translation is shown in Appendix A):

(pO(t1, . . . , tn))τ = pO(t1, . . . , tn, τ)
(pS(t1, . . . , tn))τ = pS(t1, . . . , tn, τ)

(¬α)τ = (α)τ

(∀~x.(c ⊃ α))τ = ∀~x.((c)τ ⊃ (α)τ )
(↓x.α)τ = (α[τ/x])τ

(α Sβ)τ = ∃τ ′.(in(τ ′, 0, τ) ∧ (β)τ
′

∧ (∀τ ′′.((in(τ ′′, τ ′, τ) ∧ τ ′ 6= τ ′′)

⊃ (α)τ
′′
)))

(αUβ)τ = ∃τ ′.(in(τ ′, τ,∞) ∧ (β)τ
′

∧ (∀τ ′′.((in(τ ′′, τ, τ ′) ∧ τ ′′ 6= τ ′)

⊃ (α)τ
′′
)))

We briefly explain some of the clauses of the translation. In (↓x.α)τ , x binds to the current
time, which is τ ; therefore, τ substitutes x in α in the translation. α Sβ means that β is true
at some time point in the past, which is captured by the existentially quantified variable τ ′ in
the translation, and the restriction that in(τ ′, 0, τ). Further, α should be true at all time points
between τ ′ and now (τ); this is encoded as ∀τ ′′.((in(τ ′′, τ ′, τ) ∧ τ ′′ 6= τ ′) ⊃ (α)τ

′′
).

Example 2.3. In Section 2.1 we presented two sample policies, αpol1 and αpol2. In general, we
may wish to enforce each of these policies in each state. To express the phrase “in each state”,
we define an abbreviation: Gα = ∀τ.(in(τ, 0,∞) ⊃ (α)τ ), which means that α holds at each time
point τ . Then, using the translation above and simplifying slightly, we get:

Gαpol1 =
∀τ,p1, p2,m, u, q, t.

(in(τ, 0,∞) ∧ send(p1, p2,m, τ) ∧ purp(m,u, τ) ∧
tagged(m, q, t, τ) ∧ attr in(t, phi , τ))
⊃ ((inrole(p2, doc(q), τ) ∧

purp in(u, treatment , τ)) ∨
(∃τ ′. (in(τ ′, 0, τ) ∧

consents(q, sendaction(p1, p2, (q, t)), τ
′))))

Gαpol2 =
∀τ , p, t. (in(τ, 0,∞) ∧ req(p, t, τ))
⊃ ∃τ ′, q,m.

((in(τ ′, τ, τ + 30) ∧ inrole(q, records, τ ′) ∧
send(q, p,m, τ ′)) ∧ contains(m, p, t, τ ′) ∧
∀τ ′′. (in(τ ′′, τ, τ ′) ∧ τ ′′ 6= τ ′)
⊃ ftr(p, t, τ ′′))

Note that all atoms, except those like in(. . .) and τ ′′ 6= τ ′ that are introduced by the translation
itself, have a new last argument, which is a time point. For certain predicates like tagged, attr in

and purp in, whose truth is independent of time, this last argument is redundant. For instance, if
attr in(t, t′, τ) for some τ , then attr in(t, t′, τ ′) for all τ ′.
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3 Partial Structures and Semantics

Next, we define partial structures, an abstraction of audit logs over which our enforcement algorithm
(Section 4) works. We call our structures partial because they do not necessarily stipulate the truth
or falsity of every atom, thus accurately reflecting the fact that audit logs may be incomplete in
practice. We also illustrate, by virtue of example, various kinds of audit log incompleteness that
our partial structures generalize. Finally, we define the semantics (meanings) of formulas of the
sublogic on partial structures. This definition is used in Section 4 to state the correctness of our
enforcement mechanism. Partial structures have been used, both explicitly and implicitly, in prior
work on policy enforcement; we compare to such work in Section 7.

A partial structure (abbrev. structure) is a pair L = (DL, ρL), where DL, the domain, is a set
of terms containing at least all possible time points T, and ρL is a total function from ground
(variable-free) atoms of the logic to the three-value set {tt, ff, uu}. We say that the atom P is
true, false, or unknown in the structure L if ρL(P ) is tt, ff, or uu, respectively. In practice, the
structure L may be defined using system logs (hence the notation L), whence, DL would be the set
of all terms (roles, principals, messages, attributes, time points, etc.) occurring in the logs and for
every subjective atom PS , ρL(PS) would be uu.

The semantics of our sublogic lift the definition of truth to formulas ϕ by induction on ϕ: we
write L |= ϕ to mean that “ϕ is true in the structure L”. Restrictions c are a subsyntax of formulas
ϕ, so we do not define the relation separately for them.

- L |= P iff ρL(P ) = tt

- L |= >

- L |= ϕ ∧ ψ iff L |= ϕ and L |= ψ

- L |= ϕ ∨ ψ iff L |= ϕ or L |= ψ

- L |= ∀~x.(c ⊃ ϕ) iff for all ~t ∈ DL either L |= c[~t/~x] or L |= ϕ[~t/~x]

- L |= ∃~x.(c ∧ ϕ) iff there exists ~t ∈ DL such that L |= c[~t/~x] and L |= ϕ[~t/~x]

For dual atoms, we define ρL(P ) = ρL(P ), where tt = ff, ff = tt, and uu = uu. We say that
a formula ϕ is false on the structure L if L |= ϕ. The following two properties hold:

1. Consistency: A formula ϕ cannot be simultaneously true and false in the structure L, i.e.,
either L 6|= ϕ or L 6|= ϕ

2. Incompleteness: A formula ϕ may be neither true nor false in a structure L, i.e., L 6|= ϕ and
L 6|= ϕ may both hold.

The first property follows by induction on ϕ. The second property follows from a simple example.
Consider a structure L and an atom P such that ρL(P ) = uu. Then, L 6|= P and L 6|= P .

Incompleteness in Practice We list below several ways in which system logs may be incomplete,
and describe how each can be modeled in partial structures by varying the definition of ρL.

• Subjective incompleteness: An audit log may not contain information about subjective predi-
cates. This may be modeled by requiring that ρL(PS) = uu for every subjective atom PS . We
revisit subjective incompleteness in the context of our enforcement algorithm in Section 5.1.
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• Future incompleteness: An audit log may not contain information about the future, which
is necessary to enforce policies like that in Example 2.2. This may be modeled by assuming
that for each time τ greater than the last point observed in L, and for all p, t1, . . . , tn,
ρL(p(t1, . . . , tn, τ)) = uu. (Recall that in our translation of the outer logic, the last argument
τ is the time at which the predicate’s truth is tested.) We revisit future incompleteness in
the context of our enforcement algorithm in Section 5.2.

• Spatial incompleteness: An audit log may not record all predicates. For instance, with
reference to Example 2.1, it is conceivable that the predicates send and inrole are stored
on separate sites. If we audit at the first site, information about inrole may be unavailable.
Such incompleteness is easily modeled like subjective incompleteness. For instance, we may
assume that ρL(inrole(p, r, τ)) = uu for all p, r, τ .

• Past incompleteness: An audit log may not record the existence of certain relevant states,
even those in the past. This has implications for enforcing temporal operators, e.g., we may
be unable to check that `α simply because we cannot determine what states existed in the
past. This form of incompleteness can be formally modeled by assuming that if a time point
τ does not occur in an audit log L, then ρL(in(τ, τ ′, τ ′′)) = uu. In the special case where it
is certain that the time point τ does not exist, we would have ρL(in(τ, τ ′, τ ′′)) = ff.

Our enforcement algorithm (Section 4) works with partial structures in general and, hence,
takes into account all these forms of incompleteness. We comment on some specific instances in
Section 5.

Structure Extension In practice, system logs evolve over time by gathering more information.
This leads to a natural order, L1 ≥ L2 on structures (L1 extends L2), meaning that L1 has more
information than L2. Formally, L1 ≥ L2 iff DL1 ⊇ DL2 and for all ground atoms P , ρL2(P ) ∈
{tt, ff} implies ρL1(P ) = ρL2(P ). Thus, as structures extend, the valuation of an atom may
change from uu to either tt or ff, but cannot change once it is either tt or ff. The following
property follows by induction on ϕ:

• Monotonicity: L1 ≥ L2 and L2 |= ϕ imply L1 |= ϕ.

Replacing ϕ with ϕ, we also obtain that L1 ≥ L2 and L2 |= ϕ imply L1 |= ϕ. Hence, if L1 ≥ L2
then L1 preserves both the L2-truth and L2-falsity of every formula ϕ.

In the next section, we use this order between structures to both explain and prove formal
properties of our enforcement algorithm.

4 Policy Enforcement

Our main technical contribution is an iterative process for enforcing policies written in the sublogic.
Through the translation of Section 2.2, the same process applies to policies written in the entire
policy logic. At each iteration, our algorithm takes as input a policy ϕ and the available audit
log abstracted as a partial structure L, and outputs a residual policy ψ that contains exactly the
parts of ϕ that could not be verified due to lack of information in L. Such an iteration is written
reduce(L, ϕ) = ψ. In practice, ψ may contain subjective predicates and future obligations. Once
more information becomes available, extending L to L′ (L′ ≥ L), another iteration of the algorithm
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can be used with inputs ψ and L′ to obtain a new formula ψ′. This process can be continued till a
formula trivially equivalent to > or ⊥ is obtained, or the truth or falsity of the remaining formula
is decided by human intervention. By design, our algorithm satisfies three important properties:

• Termination: Each iteration terminates.

• Correctness: If reduce(L, ϕ) = ψ, then for all extensions L′ of L, L′ |= ϕ iff L′ |= ψ.

• Minimality: If reduce(L, ϕ) = ψ, then an atom occurs in ψ only if it occurs in ϕ and its
valuation on L is uu.

The technically difficult part of the algorithm is its treatment of quantifiers ∀x.ϕ and ∃x.ϕ in
the input. Indeed, for propositional logic (logic without quantifiers), an algorithm satisfying the
three properties above can be constructed trivially: define reduce(L, ϕ) to be the formula obtained
by replacing each atom P in ϕ with > if ρL(P ) = tt, with ⊥ if ρL(P ) = ff, and with P itself if
ρL(P ) = uu. This algorithm terminates because formulas are finite, its correctness can be proved
by a simple induction on ϕ, and minimality is obvious from the definition of reduce.

However, as the reader may already anticipate, this simple idea does not extend to quantifiers.
Consider, for instance, the behavior of the algorithm on inputs ∀x.ϕ and L. Because the output must
be minimal, in order to reduce ∀x.ϕ, the algorithm must instantiate x with each possible element
of the domain DL and check the truth or falsity of ϕ for that instance on L. This immediately
leads to non-termination because in models of realistic privacy policies the domain DL must be
infinite, e.g., permissible time points and transmitted messages (which may contain free-text in
natural language) are both infinite sets.

Given the need for an infinite domain, something intrinsic in ϕ must limit the number of relevant
instances of x that need to be checked to a finite number. This is precisely what our restricted form
of universal quantification, ∀~x.(c ⊃ ϕ), accomplishes. Through syntactic restrictions of Figure 1
and other static checks described later, we ensure that there are only a finite number of instances
of ~x for which c is true on the given structure L. Further, all such instances can be mechanically
computed from L. Although fulfilling these requirements is non-trivial, given that they hold, the
rest of the algorithm is natural and syntax-directed.

Briefly, our enforcement regime contains the following components:

• An efficiently checkable relation ` ϕ on policies, called a mode analysis (borrowing the term
from logic programming [4]), which ensures that the relevant instances of each quantified
variable in ϕ are finite and computable.

• A function ŝat(L, c) that computes all satisfying instances of the restriction c.

• The function reduce(L, ϕ) that codifies a single iteration of enforcement. The definition of
reduce(L, ϕ) relies on ŝat(L, c) and assumes that ` ϕ.

In the following, we explain each of these three components, starting with the main algorithm
reduce (Section 4.1). After proving its correctness and minimality (Section 4.2), we proceed to
define ŝat and the relation ` ϕ (Section 4.3).
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4.1 Iterative Enforcement Algorithm

The core of our enforcement regime is a computable function reduce(L, ϕ) = ψ, that discharges
obligations from the prevalent policy ϕ using information from the extant structure L to obtain a
residual policy ψ. Given an initial policy ϕ0 and a sequence of structures L1 ≤ L2 ≤ . . . ≤ Ln, the
reduction algorithm can be applied repeatedly to obtain ϕ1, . . . , ϕn such that reduce(Li, ϕi−1) = ϕi.

We write this process in symbols as ϕ0
L1−→ ϕ1 . . .

Ln−−→ ϕn. Correctness (Theorem 4.2) guarantees
that ϕn is equivalent to ϕ0 in all extensions of Ln, while minimality (Theorem 4.3) certifies that
ϕn contains only those atoms of ϕ0 that could not be discharged using the information in Ln
(by definition, Ln subsumes the information in L1, . . . ,Ln−1). We note that our correctness and
minimality results are independent of the frequency or scheme used for application of reduce.

The definition of reduce(L, ϕ) has two dependencies, whose formal definitions are postponed
to Section 4.3. First, the function assumes that its input ϕ is well-moded, formally written ` ϕ.
Well-modedness is a static check, linear in the size of ϕ, which ensures that the satisfying instances
of each restriction c in each quantifier in ϕ are finite and computable. Second, reduce(L, ϕ) assumes
a function ŝat(L, c) that computes all satisfying instances of restriction c in structure L. The
output of ŝat(L, c) is a finite set of substitutions {σ1, . . . , σn}, where each substitution σi is a finite
map from free variables of c to ground terms. ŝat(L, c) satisfies the following condition: L |= cσ
iff σ ∈ ŝat(L, c).

The function reduce(L, ϕ) is defined by induction on ϕ in Figure 2. For atoms P , reduce(L, P )
equals >, ⊥, or P , according to whether ρL(P ) equals tt, ff, or uu. In particular, in the absence
of human input ρL(PS) = uu for a subjective atom PS and hence, in the absence of human input,
reduce(L, PS) = PS . The clauses for the connectives>, ⊥, ∧, and ∨ are straightforward. To evaluate
reduce(L, ∀~x.(c ⊃ ϕ)), we first determine the set of instances of ~x that satisfy c by calling ŝat(L, c).
For each such instance ~t1, . . . , ~tn, we reduce ϕ[~ti/~x] to ψi through a recursive call to reduce. Because
all instances of ϕ must hold in order for ∀~x.(c ⊃ ϕ) to be true, the output is ψ1 ∧ . . . ∧ ψn ∧ ψ′,
where the last conjunct ψ′ records the fact that instances of ~x other than ~t1, . . . , ~tn have not been
considered. The latter is necessary because there may be instances of ~x satisfying c in extensions of
L, but not L itself. Precisely, we define S = {~t1, . . . , ~tn} and ψ′ = ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ). The new
conjunct ~x 6∈ S prevents the instances ~t1, . . . , ~tn from being checked again in subsequent iterations.
Formally, ~x 6∈ S is an objective predicate that encodes the negation of usual finite-set membership.
The treatment of ∃~x.(c ∧ ϕ) is dual; in that case, the output contains disjunctions because the
truth of any one instance of ϕ suffices for the formula to hold.

Example 4.1. We illustrate iterative enforcement on the policy ϕ0 = Gαpol2 that we obtained
via translation in Example 2.3. The policy requires that the recipient of a request for information
respond within 30 days with the information. We advise the reader to revisit the example for the
definition of ϕ0. For the purpose of explanation, let us define ϕ(τ, p, t) by pattern matching to be
the formula satisfying ϕ0 = ∀τ, p, t. (in(τ, 0,∞) ∧ req(p, t, τ)) ⊃ ϕ(τ, p, t). Informally, ϕ(τ, p, t) is
the obligation that must be satisfied if principal p requests information about attribute t from her
record at time τ .

Suppose that we first run reduce(L, ϕ0) in a structure L which has the states 1, 3, 7, only one
request — Alice’s request for her medical record (attribute mr) at time 3, and no other infor-
mation. Intuitively, this information implies that ŝat(L, in(τ, 0,∞) ∧ req(p, t, τ)) = {(τ, p, t) 7→
(3,Alice,mr)}. (We check formally in Example 4.6 that this is actually the case.) Hence, by the defi-
nition of reduce, we know that reduce(L, ϕ0) = ψ1 ∧ ϕ′0, where ψ1 = reduce(L, ϕ[(3,Alice,mr)/(τ, p, t)])

12



reduce(L, P ) =


> if ρL(P ) = tt

⊥ if ρL(P ) = ff

P if ρL(P ) = uu

reduce(L,>) = >
reduce(L,⊥) = ⊥
reduce(L, ϕ1 ∧ ϕ2) = reduce(L, ϕ1) ∧ reduce(L, ϕ2)
reduce(L, ϕ1 ∨ ϕ2) = reduce(L, ϕ1) ∨ reduce(L, ϕ2)

reduce(L, ∀~x.(c ⊃ ϕ)) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ[~ti/~x])}ni=1

ψ′ ← ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ)
return
ψ1 ∧ . . . ∧ ψn ∧ ψ′

reduce(L, ∃~x.(c ∧ ϕ)) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ[~ti/~x])}ni=1

ψ′ ← ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ)
return
ψ1 ∨ . . . ∨ ψn ∨ ψ′

Figure 2: Definition of reduce(L, ϕ)

and ϕ′0 = ∀τ, p, t. (in(τ, 0,∞) ∧ req(p, t, τ) ∧ (τ, p, t) 6∈ {(3,Alice,mr)}) ⊃ ϕ(τ, p, t). The reader
may check that because the trace has no other information, ψ1 = ϕ[(3,Alice,mr)/(τ, p, t)], so the
output of the reduction is ψ1 ∧ ϕ′0. Expansion of the formula ψ1 shows that it is precisely the
obligation that the recipient respond to Alice with her medical record in 30 days. Call this entire
output ϕ1.

Consider a second round of audit on the reduced policy ϕ1 and an extended trace L′ which has
the additional state 11 in which Bob, in role “records”, responds with a message M to Alice. Since
ϕ1 = ψ1 ∧ ϕ′0, we have reduce(L′, ϕ1) = reduce(L′, ψ1) ∧ reduce(L′, ϕ′0). The reader may check
that reduce(L′, ϕ′0) = ϕ′0 because the top-level restriction in ϕ′0 has no satisfying instance in L′.
Thus, we consider here the reduction of ψ1. Note that ψ1 has the form ∃τ ′, q,m. ((in(τ ′, 3, 33) ∧
inrole(q, records, τ ′) ∧ send(q,Alice,m, τ ′)) ∧ ϕ′(τ ′, q,m)). To calculate its reduction, we first ob-
serve that from the information in L′, it should follow that ŝat(L′, in(τ ′, 3, 33) ∧ inrole(q, records, τ ′) ∧
send(q,Alice,m, τ ′)) = {(τ ′, q,m) 7→ (11,Bob,M)}. (Again, we check formally in Example 4.6 that
this is the case.) Consequently, reduce(L′, ψ1) = ψ′1 ∨ ϕ′1, where ψ′1 = reduce(L′, ϕ′(11,Bob,M))
and ϕ′1 = ∃τ ′, q,m. ((in(τ ′, 3, 33) ∧ inrole(q, records, τ ′) ∧ send(q,Alice,m, τ ′) ∧ (τ ′, q,m) 6∈
{(11,Bob,M)}) ∧ ϕ′(τ ′, q,m)). We calculate ψ′1 below. The second disjunct ϕ′1 simply means that
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the policy is satisfied if at some point other than 11 (but before 33), someone in role “records”
sends Alice’s mr to her.

What is ψ′1 = reduce(L′, ϕ′(11,Bob,M))? Expanding ϕ′, we have ϕ′(11,Bob,M) =
contains(M,Alice,mr, 11) ∧ ψ′2, where ψ′2 = ∀τ ′′. (in(τ ′′, 3, 11) ∧ τ ′′ 6= 11) ⊃ ftr(Alice,mr, τ ′′).
Because contains is a subjective predicate, ρL′(contains(M,Alice,mr, 11)) = uu so, by definition,
reduce(L′, contains(M,Alice,mr, 11)) = contains(M,Alice,mr, 11). Hence, if reduce(L′, ψ′2) =
ψ′′2 , then ψ′1 = contains(M,Alice,mr, 11) ∧ ψ′′2 .

To compute ψ′′2 , we note that ŝat(L′, in(τ ′′, 3, 11) ∧ τ ′′ 6= 11) = {τ ′′ 7→ 3, τ ′′ 7→ 7}. It
follows that reduce(L′, ψ′2) = ψ′′2 = ftr(Alice,mr, 3) ∧ ftr(Alice,mr, 7) ∧ ψ′′′2 , where ψ′′′2 =
∀τ ′′. (in(τ ′′, 3, 11) ∧ τ ′′ 6= 11 ∧ τ ′′ 6∈ {3, 7}) ⊃ ftr(Alice,mr, τ ′′). Informally, ψ′′2 means that
it should have been infeasible to respond to Alice at times 3 and 7 (which are the only two observed
time points on L′ before the response at time 11), and also at any other time points between 3 and
11 that may show up in extensions of L′.

Putting back the various formulae, we have reduce(L′, ϕ1) = (ψ′1 ∨ ϕ′1) ∧ ϕ′0, where ψ′1 =
contains(M,Alice,mr, 11) ∧ ψ′′2 means that the message M sent to Alice at time 11 contain her
mr and that it be infeasible to respond earlier (ψ′′2), ϕ′1 allows for the possibility to satisfy Alice’s
request through another response before time 33, and ϕ′0 enforces the top-level policy on any other
requests. This is exactly what we might expect from an informal analysis. Further, note that the
reduction exposes the ground subjective atoms contains(M,Alice,mr, 11), ftr(Alice,mr, 3) and
ftr(Alice,mr, 7) for a human auditor to inspect and discharge.

4.2 Correctness and Minimality of Enforcement

The function reduce is correct in the sense that its input and output formulas contain the same
obligations. Formally, if reduce(L, ϕ) = ψ, then in all extensions of L, ϕ is true iff ψ is true and ϕ
is false iff ψ is false.

Theorem 4.2 (Correctness of reduce). If reduce(L, ϕ) = ψ and L′ ≥ L, then (1) L′ |= ϕ iff L′ |= ψ
and (2) L′ |= ϕ iff L′ |= ψ.

Proof. See Appendix B, Theorem B.5.

The proof of this theorem relies on correctness of ŝat, which we prove in the next subsection
(Theorem 4.5). Correctness of iterative enforcement is an immediate corollary of Theorem 4.2. We

can prove by induction on n that if ϕ0
L1−→ ϕ1 . . .

Ln−−→ ϕn, then for all extensions L′ ≥ Ln, L′ |= ϕn
iff L′ |= ϕ0 and L′ |= ϕn iff L′ |= ϕ0.

Next, we wish to prove that if reduce(L, ϕ) = ψ then ψ is minimal with respect to ϕ and L, i.e.,
an atom occurs in ψ only if it occurs in ϕ and its interpretation in L is unknown. Unfortunately,
owing to quantification, there is no standard definition of the set of atoms of a formula of first-order
logic. In the following, we provide one natural definition of the atoms of a formula and characterize
minimality with respect to it; other similar characterizations are possible. If ` ϕ, we define the set
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of atoms of a formula ϕ with respect to a structure L as follows.

atoms(L, PS) = {PS}
atoms(L, PO) = {PO}
atoms(L,>) = {}
atoms(L,⊥) = {}
atoms(L, ϕ1 ∧ ϕ2) = atoms(L, ϕ1) ∪ atoms(L, ϕ2)
atoms(L, ϕ1 ∨ ϕ2) = atoms(L, ϕ1) ∪ atoms(L, ϕ2)
atoms(L, ∀~x.(c ⊃ ϕ)) =

⋃
σ∈ŝat(L,c) atoms(L, ϕσ)

atoms(L, ∃~x.(c ∧ ϕ)) =
⋃
σ∈ŝat(L,c) atoms(L, ϕσ)

The following theorem characterizes minimality of reduce with respect to the above definition
of atoms in a formula.

Theorem 4.3 (Minimality). Suppose ` ϕ and reduce(L, ϕ) = ψ. Then atoms(L, ψ) ⊆ atoms(L, ϕ)∩
{P | ρL(P ) = uu}.

Proof. See Appendix B, Theorem B.12.

Example 4.4. Revisiting Example 4.1, we check that the output produced by the second reduction
satisfies Theorem 4.3. Recall that the second reduction is reduce(L′, ϕ1) = (ψ′1 ∨ ϕ′1) ∧ ϕ′0. ϕ′1
and ϕ′0 each have top-level quantifiers whose guards have no satisfying instances in L′, so, by
definition of atoms, ϕ′1 and ϕ′0 have no atoms w.r.t. L′. Thus we turn to ψ′1. It is easy to
check that atoms(L′, ψ′1) is the three element set {contains(M,Alice,mr, 11), ftr(Alice,mr, 3),
ftr(Alice,mr, 7)}. Further, from the analysis of Example 4.1, each of these three atoms also exist
in atoms(L′, ϕ1). Finally, each of the three atoms is subjective, so each has a valuation uu in L.

4.3 Quantifier Instantiation and Mode Analysis

Having described our main enforcement function reduce, we turn to the mode analysis relation
` ϕ and the function ŝat on which the definition of reduce relies. The rest of this paper can be
understood without understanding this section, so the disinclined reader may choose to skip it.

Input and Output The objective of our mode analysis, as mentioned earlier, is to ensure that the
set of satisfying instances of quantified variables ~x in a restriction c be both finite and computable.
Our method of mode analysis is inspired by, and based on a similar technique in logic programming
(see, e.g. [4]). The key observation in mode analysis is that, for many predicates, the set of all
satisfying instances on any given structure can be computed finitely if arguments in certain positions
are ground. The reason why instances can be computed may vary from predicate to predicate; we
illustrate some such computations from prior examples.

1. Given a ground m, the set of q, t such that tagged(m, q, t, τ) holds is finite and can be
computed from m itself, as we assumed in Example 2.1. (Note that the last argument τ is
an artifact of our translation and is irrelevant here.)

2. For an action predicate like send(p1, p2,m, τ), we can compute all instances of p1, p2, m, τ
for which send(p1, p2,m, τ) holds simply by querying the given system log.
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3. Given ground τ2, τ3, we can compute all τ1 such that in(τ1, τ2, τ3) by looking at the states in
the given system log and selecting the subset that lie in the interval [τ2, τ3].

4. Given ground r and τ , we can compute all principals p such that inrole(p, r, τ) by looking
at the roles’ database.

Note that in each of the cases 1–4, we require that certain argument positions be ground (e.g.,
m in 1 and τ2, τ3 in 3), and compute others (e.g., q, t in 1 and τ1 in 3). We call these the input
and output argument positions, respectively. Formally, we represent input and output positions
by two partial functions I and O (input and output) from predicates to 2N, which we assume are
given to us. The functions are partial because satisfying instances of certain predicates, including
all subjective predicates, are not computable. Following the earlier example, we could choose:

1. I(tagged) = {1}, O(tagged) = {2, 3}

2. I(send) = {}, O(send) = {1, 2, 3, 4}

3. I(in) = {2, 3}, O(in) = {1}

4. I(inrole) = {2, 3}, O(inrole) = {1}

For a subjective predicate pS , I(pS) and O(pS) are undefined. The sets I(p) and O(p) are
called a moding of predicate p. If i ∈ I(p) (i ∈ O(p)), we say that the ith argument of p is in input
(output) mode. Certain arguments may be in neither input nor output mode, e.g., argument 4 of
the predicate tagged. Also, the same predicate may be moded in multiple ways. For example, both
the assignments (I(send) = {}, O(send) = {1, 2, 3, 4}) and (I(send) = {1}, O(send) = {2, 3, 4})
are correct. However, it suffices to assume that each predicate has a unique moding, because we
can use different names for predicates with the same interpretation but different modings.

Substitution Computation A substitution σ is a finite map from variables to ground terms.
Say that a substitution σ′ extends a substitution σ, written σ′ ≥ σ, if dom(σ′) ⊇ dom(σ) and for all
x ∈ dom(σ), σ(x) = σ′(x). We abstract the computation of terms in output positions from terms in
input positions as a partial computable function sat. The input of the function is a pair containing
a structure and an atom; its output is a finite set of substitutions. The function sat satisfies the
following condition:

Given a structure L and an atom p(t1, . . . , tn) such that for all i ∈ I(p), ti is ground,
sat(L, p(t1, . . . , tn)) is the set of all substitutions for variables in

⋃
i∈O(p) ti that have

extensions σ such that L |= p(t1, . . . , tn)σ.

For example, if in structure L, principal Charlie has doctors Alice and Bob at time τ , then
sat(L, inrole(p, doc(Charlie), τ)) would be the two element set {p 7→ Alice, p 7→ Bob}. If the
input arguments in atom P are not ground, then sat(L, P ) may be undefined. For example, if
either τ2 or τ3 is not ground, then sat(L, in(τ1, τ2, τ3)) is undefined. Because subjective predicates
are not computable, sat(L, PS) is also undefined for every subjective atom PS . In practice, the
function sat(L, P ) could be implemented through queries to the database that stores the audit log.

We lift the function sat to the function ŝat that computes satisfying instances of restrictions.
The specification of the lifted function ŝat(L, c) is similar to that of sat: Given a partially ground
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restriction c, ŝat(L, c) is a finite set of substitutions characterizing all satisfying instances of c.

ŝat(L, pO(t1, . . . , tn)) = sat(L, pO(t1, . . . , tn))
ŝat(L,>) = {•}
ŝat(L,⊥) = {}
ŝat(L, c1 ∧ c2) =

⋃
σ∈ŝat(L,c1) σ + ŝat(L, c2σ)

ŝat(L, c1 ∨ c2) = ŝat(L, c1) ∪ ŝat(L, c2)
ŝat(L,∃x.c) = ŝat(L, c)\{x} (x fresh)

For atoms, the definition of ŝat coincides with that of sat. Since > must always be true,
ŝat(L,>) contains only the empty substitution (denoted •). Since ⊥ can never be satisfied,
ŝat(L,⊥) is empty. For c1 ∧ c2, the set of satisfying instances is obtained by taking those of
c1 (denoted σ above), and conjoining those with satisfying instances of c2σ (the operation + is
composition of substitutions with disjoint domains). The set of satisfying instances of c1 ∨ c2 is the
union of the satisfying instances of c1 and c2. Satisfying instances of ∃x.c are obtained by taking
those of c, and removing the substitutions for x.

ŝat is a partial function because the underlying function sat is partial. For instance, taking
an example from Section 2, ŝat(L, send(p1, p2,m, τ) ∧ tagged(m′, q, t, τ ′)) is undefined if m′ is a
variable because any substitution σ in the output of the recursive call ŝat(L, send(p1, p2,m, τ))
will not contain m′ in its domain and, therefore, in the call to ŝat(L, tagged(m′, q, t, τ ′)σ), the
first argument to tagged will be non-ground. Since I(tagged) = {1}, this recursive call may fail
to return an answer. On the other hand, ŝat(L, send(p1, p2,m, τ) ∧ tagged(m, q, t, τ ′)) is defined
because the first argument of tagged in the second recursive call is m, which is grounded by the
substitution σ of the first recursive call. Despite being partial, ŝat(L, c) represents all satisfying
instances of c, whenever it is defined, as formalized by the following theorem.

Theorem 4.5 (Correctness of ŝat). If ŝat(L, c) is defined then for any substitution σ′ with
dom(σ′) ⊇ fv(c), L |= cσ′ iff there is a substitution σ ∈ ŝat(L, c) such that σ′ ≥ σ.

Proof. See Appendix B, Theorem B.3.

Example 4.6. In Example 4.1, we informally evaluated ŝat at several places. Here, we justify
the first two evaluations. In the first instance, we said that ŝat(L, in(τ, 0,∞) ∧ req(p, t, τ)) =
{(τ, p, t) 7→ (3,Alice,mr)}. This follows from the observation that from the information in the
structure L, we must have sat(L, in(τ, 0,∞)) = {τ 7→ 1, τ 7→ 3, τ 7→ 7}, sat(L, req(p, t, 3)) =
{(p, t) 7→ (Alice,mr)} and sat(L, req(p, t, τ)) = {} for τ 6= 3. The result of applying ŝat follows
from its definition.

Similarly, we calculated that ŝat(L′, in(τ ′, 3, 33) ∧ inrole(q, records, τ ′) ∧ send(q,Alice,m, τ ′))
= {(τ ′, q,m) 7→ (11,Bob,M)}. This follows because, from the description of L′, sat(L′, in(τ ′, 3, 33))
= {τ ′ 7→ 3, τ ′ 7→ 7, τ ′ 7→ 11}, sat(L′, inrole(q, records, T )) = {q 7→ Bob} for T = 11 and {} other-
wise, and sat(L′, send(q, p,m, τ ′)) = {(q, p,m, τ ′) 7→ (Bob,Alice,M, 11)}.

Mode Analysis Next, we define a static check of restrictions to rule out those on which ŝat

is not defined, e.g., send(p1, p2,m, τ) ∧ tagged(m′, q, t, τ ′) described earlier. This static check is
what we call the mode analysis. A restriction that passes the check is called well-moded. Formally,
we define well-modedness as a relation χI ` c : χO, where χI and χO are sets of variables. If the

17



χI ` c : χO

∀k ∈ I(pO). fv(tk) ⊆ χI χO = χI ∪ (
⋃

j∈O(pO)

fv(tj))

χI ` pO(t1, . . . , tn) : χO χI ` > : χI χI ` ⊥ : χI

χI ` c1 : χ χ ` c2 : χO

χI ` c1 ∧ c2 : χO

χI ` c1 : χ1 χI ` c2 : χ2

χI ` c1 ∨ c2 : χ1 ∩ χ2

χI ` c : χO

χI ` ∃x.c : χO\{x}

χ ` ϕ

∀k. fv(tk) ⊆ χ
χ ` p(t1, . . . , tk) χ ` > χ ` ⊥

χ ` ϕ1 χ ` ϕ2

χ ` ϕ1 ∧ ϕ2

χ ` ϕ1 χ ` ϕ2

χ ` ϕ1 ∨ ϕ2

χ ` c : χO ~x ⊆ χO fv(c) ⊆ χ ∪ ~x χO ` ϕ
χ ` ∀~x.(c ⊃ ϕ)

χ ` c : χO ~x ⊆ χO fv(c) ⊆ χ ∪ ~x χO ` ϕ
χ ` ∃~x.(c ∧ ϕ)

(In the rules for quantifiers, bound variables x or ~x must be renamed so that they are fresh.)

Figure 3: Moding Rules

relation holds, then for any σ with dom(σ) ⊇ χI and any L, ŝat(L, cσ) is defined and, further, any
substitution in it contains all of χO\χI in its domain. (χI and χO are analogues of inputs and
outputs for restrictions.)

The relation χI ` c : χO is defined by the rules of Figure 3, which also constitute a linear-time
decision procedure for deciding the relation (with inputs c and χI and output χO). We explain
some of the rules. An atom p(t1, . . . , tk) is well-moded if the free variables (abbreviated fv) of
input positions are ground (premise ∀k ∈ I(pO). fv(tk) ⊆ χI of the first rule) and the output χO
equals χI (which is already ground) unioned with

⋃
j∈O(pO) fv(tj) (all of which must be in the

domain of sat(L, p(t1, . . . , tn))). The rule for conjunctions c1 ∧ c2 chains the outputs χ of c1 into
the inputs of c2. The following theorem establishes that ŝat is total on well-moded restrictions and
also establishes the relation between χI , χO and the substitutions in the output of ŝat.

Theorem 4.7 (Totality of ŝat). If χI ` c : χO, then for all structures L and all substitutions
σ with dom(σ) ⊇ χI , ŝat(L, cσ) is defined and, further, for each substitution σ′ ∈ ŝat(L, cσ),
χI ∪ dom(σ′) ⊇ χO.

Proof. See Appendix B, Theorem B.6.

We extend the mode-check on restrictions to formulas ϕ of the sublogic. The objective of this
mode-check is two-fold. First, the check ensures that all restrictions occurring in ϕ are well-moded
in the sense described above. Second, for quantifiers ∀~x.(c ⊃ ϕ′) and ∃~x.(c ∧ ϕ′), the check ensures
that the quantified variables ~x are contained in the outputs (χO) of the restriction c. (Hence, by
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Theorems 4.5 and 4.7, any substitution in ŝat(L, c) grounds ~x, which is central to the termination
of reduce.) The mode-check is formalized as the relation χ ` ϕ, meaning that for any substitution
σ with dom(σ) ⊇ χ, the formula ϕσ is well-moded. Its straightforward rules are shown in Figure 3.
The rules constitute a linear-time decision procedure for checking the relation (with inputs χ and
ϕ). In the rules for ∀~x.(c ⊃ ϕ′) and ∃~x.(c ∧ ϕ′), the first premises check that c is well-moded. The
second premises ensure that the variables ~x are contained in the output χO of the mode check on c.
The third premises ensure that c is closed. It can easily be checked that if χ ` ϕ, then fv(ϕ) ⊆ χ.

We call a formula ϕ well-moded if {} ` ϕ, which we abbreviate to ` ϕ. The following theorem
shows that on well-moded formulas, the function reduce is total. Further on a well-moded input,
the output is also well-moded (so the output can used as input in a subsequent iteration).

Theorem 4.8 (Totality of reduce). If ` ϕ then there is a ψ such that reduce(L, ϕ) = ψ and ` ψ.

Proof. See Appendix B, Theorem B.10.

Example 4.9. It can easily be checked that the formulas Gαpol1 and Gαpol2 defined in Example 2.3
are all well-moded (e.g., ` Gαpol1) using the definitions of I and O presented at the beginning of
this subsection.

5 Specific Instances of Enforcement

We analyze the behavior of our enforcement algorithm on two restricted classes of structures. First,
we consider objectively-complete structures – those that map every objective atom to either tt or ff
(Section 5.1). We show that for such structures L, the output of reduce(L, ϕ) can be simplified to
conjunctions and disjunctions of ground subjective atoms through trivial rewriting (e.g., replacing
> ∧ ψ with ψ), thus making it more amenable to human inspection. We also obtain a decision
procedure to decide the truth and falsity of input formulas without subjective predicates.

Second, we consider past-complete structures, those that have complete information up to a
specific point of time (Section 5.2). This corresponds to the standard assumption in every existing
work on enforcement of temporal properties that the audit log contains all past information. In
particular, we show that on past-complete traces, our algorithm yields a method to find violations
of safety properties [2] and satisfactions of co-safety properties [11] at the earliest.

5.1 Execution on Objectively-Complete Structures

We analyze the output of reduce(L, ϕ) when L is objectively-complete. Although objective-
completeness requires that truth and falsity of objective atoms be determined even in the future, it
may model some realistic settings. For instance, after audit-relevant information has been gathered
from all possible sources, it may be assumed that any fact not explicitly seen is, by default, false.
The resulting structure would be objectively-complete. Objectively-complete structures correspond
to the case of subjective incompleteness from Section 3.

Definition 5.1. A structure L is called objectively-complete if for all objective atoms PO, ρL(PO) ∈
{tt, ff}.

If a structure L is objectively-complete, then during the execution of reduce(L, ϕ), all relevant
substitutions can be found for quantifiers and all objective atoms can be replaced with either >
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or ⊥. Indeed, we show in this subsection that if L is objectively-complete, then the output, ψ, of
reduce(L, ϕ) can be rewritten (using straightforward rewrite rules) to a logically equivalent formula
that is either > or ⊥ or contains only subjective atoms, conjunctions and disjunctions. This has
practical importance because, as compared to a formula with quantifiers, a formula containing only
subjective atoms, conjunctions and disjunctions is more amenable to human inspection and audit.

There are two kinds of rewriting we need to perform on the output ψ to reduce it to our
desired form. First, we need to eliminate unnecessary occurrences of > and ⊥ that arise either
from occurrences of > and ⊥ in the input formula, or as replacements of atoms that evaluate to
tt and ff respectively. Such occurrences can be eliminated by repeatedly applying the following
eight rewriting rules anywhere in the output:

ψ ∧ > → ψ > ∧ ψ → ψ
ψ ∧ ⊥ → ⊥ ⊥ ∧ ψ → ⊥
ψ ∨ > → > > ∨ ψ → >
ψ ∨ ⊥ → ψ ⊥ ∨ ψ → ψ

For example, if ϕ = PO ∧ PS for an objective atom PO and a subjective atom PS and ρL(PO) =
tt, then reduce(L, ϕ) = > ∧ PS . This can be simplified to PS using the second rule above. Note
that each rule above preserves logical equivalence of formulas.

Second, we need to eliminate those quantified subformulas in the output that are called ψ′ in the
definition of reduce (Figure 2). These have the forms ∀~x.((c ∧ x 6∈ S) ⊃ ϕ) and ∃~x.((c ∧ x 6∈ S) ∧ ϕ).
Because S contains all instances of ~x that satisfy c, (c ∧ x 6∈ S) has no satisfying instances in L,
i.e., ŝat(L, (c ∧ x 6∈ S)) = {}. Further, because L is objectively-complete, any extension L′ of L
must agree with L on valuation of objective atoms, so, by Theorem 4.5, ŝat(L′, (c ∧ x 6∈ S)) =
{}. Consequently, ∀~x.((c ∧ x 6∈ S) ⊃ ϕ) is logically equivalent to > in all extensions of L and
∃~x.((c ∨ x 6∈ S) ⊃ ϕ) is logically equivalent to ⊥ in all extensions of L. This immediately yields
the following two rules for elimination of quantifiers from the output of reduce.

∀~x.(c ⊃ ϕ)→ > ∃~x.(c ∧ ϕ)→ ⊥

We point out that, unlike the eight rewriting rules presented earlier, the two rewriting rules above
do not preserve logical equivalence in general, but they preserve logical equivalence when applied
to the output ψ = reduce(L, ϕ) for objectively-complete L.

Let →∗ denote the reflexive-transitive closure of →. Since → makes formulas strictly smaller,
it cannot be applied indefinitely to any formula. Further, even though a formula may be rewritten
in many ways using a single application of →, the formula obtained by applying → exhaustively
starting from a fixed initial formula is unique because → is confluent.

Theorem 5.2. Suppose L is objectively-complete, ` ϕ and ψ = reduce(L, ϕ). Then ψ →∗ ψ′, where
(1) ψ′ is either >, or ⊥, or contains only subjective atoms and the connectives ∧, ∨, and (2) For
all L′ ≥ L, L′ |= ψ iff L′ |= ψ′ and L′ |= ψ iff L′ |= ψ′.

Proof. See Appendix C, Theorem C.4.

An interesting special case arises on inputs ϕ without any subjective predicates. In this case,
it can be proved by induction on ϕ that if L is objectively-complete, then either L |= ϕ or L |= ϕ
(either ϕ is true in L or it is false). Interestingly, for such inputs, Theorem 5.2 yields a decision
procedure for determining the truth or falsity of ϕ in L. The proof of this fact is straightforward.
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By minimality of reduce (Theorem 4.3), the output ψ of reduce(L, ϕ) cannot contain any subjective
atoms if ϕ does not contain them, so neither can the formula ψ′ obtained by rewriting in The-
orem 5.2. Hence, ψ′ must be either > or ⊥. If ψ′ = >, then by Theorem 4.2, L |= ϕ, and if
ψ′ = ⊥, then by the same theorem, L |= ϕ. This is a decision procedure because both reduce and
→∗ terminate.

5.2 Execution on Past-Complete Structures

Next, we analyze our enforcement algorithm on structures that have complete information up to
a specific point of time, say τ0. We call such structures τ0-past-complete or, briefly, τ0-complete.
Past-completeness corresponds to future incompleteness from Section 3 and is practically relevant
because in many cases, audit logs record all relevant events as they happen and the entire history
is available to an enforcement algorithm. In fact, this is a standard assumption in all existing
literature on either runtime or post-hoc enforcement of temporal properties. The classic result in
this context is that, under this assumption, a runtime monitor can detect both violation of so-called
safety properties (a given bad event never happens) and satisfaction of so-called co-safety properties
(a given good event happens at some time either in the past or in the future) at the earliest possible
time. In the rest of this subsection, we show that on past-complete structures similar results hold
for our enforcement method.

We start by formally defining past-complete structures, then adapt a standard characterization
of safety and co-safety properties in temporal logic to our setting, and finally prove that the function
reduce, together with rewriting →, yields a method to enforce both safety and co-safety properties.
It is important to mention here that violation or satisfaction of a property cannot be defined
formally if the property has subjective predicates. Consequently, we assume in this subsection, like
existing literature on the subject, that policies do not contain subjective predicates.

Definition 5.3. Given a ground time τ0, a structure L is called τ0-past-complete or τ0-complete
if the following two conditions hold:

1. For all predicates p, all ground t1, . . . , tn and all τ ≤ τ0, ρL(p(t1, . . . , tn, τ)) ∈ {tt, ff}.

2. For all ground τ1, τ2, τ3 such that τ1 ≤ τ0, ρL(in(τ1, τ2, τ3)) ∈ {tt, ff}.

The first condition means that the truth or falsity of every atom in the temporal logic can be
determined at time τ if τ ≤ τ0. The second condition states that L records all relevant states up
to time τ0.

Safety and Co-safety Informally, a safety property states that a specified bad condition is never
satisfied. Dually, a co-safety property states that a specified good condition is satisfied at some time
(either in the past or in the future). Although the two kinds of properties are often characterized
in terms of traces (semantically) [2, 11], characterizations of the two kinds of properties as classes
of formulas in logic are more relevant for us. It is known [23] that safety properties correspond to
formulas of the form Gαp, where G is the “in every state” operator introduced in Example 2.3
and αp is an arbitrary formula of the temporal logic not containing any future operators (0 and

U). In words, Gαp means that in every state (the bad condition) ¬αp does not hold. As an
illustration, the policy Gαpol1 in Example 2.3 is a safety property, but Gαpol2 is not because it
contains a future operator. Dually, co-safety properties can be characterized as formulas of the form
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Fαp = ∃τ.(in(τ, 0,∞) ∧ (αp)
τ ), informally meaning that in some state τ , (the good condition) αp

holds.1

We say that a safety property Gαp is violated at time τ in a structure L if L |= (αp)τ . In other
words, Gαp is violated at time τ if at that time, the negation of αp holds in L. Similarly, we say
that a co-safety property Fαp is satisfied at time τ in a structure L if L |= (αp)

τ .
Our first result (Theorem 5.4) is that if a safety property Gαp is violated at time τ in a

structure L that is τ0-complete (τ ≤ τ0), then reduce(L,Gαp)→∗ ⊥ (and conversely). This result
is important because it implies that violations of safety properties can be detected in the next
iteration of enforcement after they occur if audit logs contain all past information. An analogous
result – Theorem 5.5 – holds for co-safety properties, wherein satisfaction can be detected at the
earliest. The justification for both theorems is similar to that for Theorem 5.2, but more involved.
Because both reduce and→∗ terminate, the theorems also provide decision procedures for enforcing
safety and co-safety properties on past-complete structures.

Theorem 5.4 (Enforcement of safety properties). Suppose Gαp is a safety property, ` Gαp, L is
τ0-complete, and for all τ , (ρL(in(τ, 0,∞)) = tt)⇒ τ ≤ τ0. Then, reduce(L,Gαp)→∗ ⊥ iff there

is a τ such that L |= in(τ, 0, τ0) and L |= (αp)τ .

Proof. See Appendix C, Theorem C.12.

Theorem 5.5 (Enforcement of co-safety properties). Suppose Fαp is a co-safety property, ` Fαp,
L is τ0-complete, and for all τ , (ρL(in(τ, 0,∞)) = tt) ⇒ τ ≤ τ0. Then, reduce(L,Fαp) →∗ > if
and only if there is a τ such that L |= in(τ, 0, τ0) and L |= (αp)

τ .

Proof. See Appendix C, Theorem C.13.

Example 5.6. We check Theorem 5.4 on the safety property Gαpol1 from Example 2.3. The policy
states that if a message m is sent by p1 to p2 for purpose u and the message is tagged as containing
q’s data about attribute t (which is a form of phi), then either the recipient p2 is q’s doctor and
the purpose u is treatment, or q has previously consented to this message transmission.

We consider a simple structure L in which this policy is violated. L has only one time point
7, at which principal A sends principal B a message M . The message M is labeled with purpose
test (purp in(test, treatment) holds) and tagged as containing principal C’s information about
attribute meds (medications), which is a form of phi. Further, B, the recipient, is not C’s doctor.
Suppose that we audit at a later point of time (10) and that L described above is 10-complete.
Since there is no other information in L besides what has been mentioned, C has not consented
explicitly to this message transmission, so the policy has been violated at time 7. We seek to verify
that reduce(L,Gαpol1)→∗ ⊥.

We start by computing reduce(L,Gαpol1). The reader is advised to revisit the definition of
Gαpol1 in Example 2.3. At the top-level, Gαpol1 contains a universal quantifier with restriction c =
(in(τ, 0,∞) ∧ send(p1, p2,m, τ) ∧ purp(m,u, τ) ∧ tagged(m, q, t, τ) ∧ attr in(t, phi , τ)). Com-
puting ŝat(L, c) yields {(τ, p1, p2,m, u, q, t) 7→ (7,A,B,M, test,C,meds)}. Hence, reduce(L,Gαpol1)
= reduce(L, ϕ1) ∧ ϕ′0, where ϕ1 is shown below and ϕ′0 is almost a copy of the original policy, with
a larger restriction. The only aspect of ϕ′0 relevant for this example is that it contains a top-level
universal quantifier.

1We have not seen this characterization of co-safety properties in literature, but it is easily derived as the dual of
the known characterization of safety properties.
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ϕ1 = (inrole(B, doc(C), 7) ∧
purp in(test, treatment , 7)) ∨

(∃τ ′. (in(τ ′, 0, 7) ∧
consents(C, sendaction(A,B, (C,meds)), τ ′)))

Next, we calculate reduce(L, ϕ1). Since ρL(inrole(B, doc(C), 7)) = ff and
ρL(purp in(test, treatment , 7)) = tt, reduce(L, ϕ1) = (⊥ ∧ >) ∨ reduce(L, ϕ2), where ϕ2 is the
second disjunct of ϕ1. Finally, we compute reduce(L, ϕ2). The top-level connective of ϕ2 is an ex-
istential quantifier restricted by in(τ ′, 0, 7). Since ŝat(L, in(τ ′, 0, 7)) = {τ ′ 7→ 7}, reduce(L, ϕ2) =
reduce(L, ϕ3) ∨ ϕ′2, where ϕ3 = consents(C, sendaction(A,B, (C,meds)), 7) and ϕ′2 begins with
an existential quantifier. Clearly, reduce(L, ϕ3) = ⊥. Putting the pieces back together, we get
reduce(L,Gαpol1) = ((⊥ ∧ >) ∨ (⊥ ∨ ϕ′2)) ∧ ϕ′0.

Since ϕ′0 and ϕ′2 begin with a universal and an existential quantifier, they can be rewritten to
> and ⊥ respectively. So, reduce(L,Gαpol1) → ((⊥ ∧ >) ∨ (⊥ ∨ ⊥)) ∧ >, which can easily be
rewritten to ⊥, thus indicating a violation. If we change the example to avoid a violation, say by
setting ρL(inrole(B, doc(C), 7)) to tt instead of ff, then the result of rewriting changes from ⊥
to >, indicating a lack of violation thus far. Finally, if we do not assume that L is past-complete,
then the rewriting of ϕ′2 to ⊥ is unsound because there may be an extension of L in which ϕ′2 is true
and, hence, the original property may not have been violated, but our procedure would conclude
that it is. So, past-completeness is a necessary assumption in Theorem 5.4 (and also Theorem 5.5).

6 Application to HIPAA

We comment on application of our algorithm to transmission-relevant clauses of the HIPAA Privacy
Rule. These clauses can be viewed as a template for actual privacy policies, which may be obtained
by instantiating abstract roles like “covered entity” in HIPAA with actual roles like “doctor”,
“nurse”, etc. In prior work on PrivacyLFP [16], we have shown that all 84 transmission-related
clauses in HIPAA can be represented in the logic. Since we have restricted the syntax of quantifiers
in this paper to facilitate enforcement, an immediate question is whether we can still represent all
the clauses of HIPAA in our logic. A careful re-analysis of the prior work reveals that 81 of the 84
clauses fall in the fragment considered in this paper. The three remaining clauses, namely Sections
164.506(c)(4), 164.512(k)(1)(i), and 164.512(k)(1)(iv) of HIPAA, contain quantifiers with subjective
restrictions. However, in each such case, the formula under the quantifier contains only subjective
predicates and, therefore, the entire formula may be considered a single subjective predicate. With
this minor change, the algorithm of Section 4 can be applied to all 84 clauses of HIPAA.

The next question is the usefulness of the algorithm, given that HIPAA contains many subjective
predicates (in fact, 578 out of a total of 881 atoms in our formalization of HIPAA are subjective).
The answer to this question is two-fold. First, irrespective of the percentage of subjective atoms,
one practical advantage of using our algorithm is that it instantiates quantifiers automatically using
log data, which could otherwise be a daunting task for a human auditor.

Second, our algorithm automatically discharges objective atoms from fully instantiated formu-
las, leaving only subjective atoms for a human auditor. As discussed in the prior work, with a
slight amount of design effort, e.g., standardizing message formats, 402 of the subjective atoms
can be mechanized, leaving a total of 176 subjective atoms, and improving the effectiveness of
the algorithm significantly. A reasonable method to quantify the effectiveness of the algorithm
on instantiated formulas is to calculate the ratio of the number of objective atoms to the total

23



number of atoms for all 84 clauses. (A more accurate assessment can be made if we also know how
frequently each clause of HIPAA gets instantiated, but this is impossible without real data.) In
Appendix D, we list for each clause the numbers of subjective and objective atoms in it (#S and
#O respectively), as well as the number of subjective atoms that can be mechanized by simple
design effort such as standardizing message formats (#O’). The ratio (#O’ + #O) / (#S + #O)
shown in the last column is an estimate of the percentage of the clause our algorithm will reduce
automatically, assuming that the required design effort has been made. Based on these figures, we
count that in 17 clauses, all atoms can be reduced automatically; in 24 other clauses, at least 80%
of the atoms can be reduced automatically; and in 29 other clauses, at least 50% of the atoms can
be reduced automatically. On the other hand, in 6 clauses our algorithm cannot reduce any atoms
automatically but 5 out of these 6 clauses contain exactly one subjective atom each.

In summary, even though completely automatic enforcement of policies derived from HIPAA is
impossible due its use of subjective predicates, our algorithm can help reduce the burden of human
auditors significantly, both by instantiating quantifiers automatically and by discharging objective
atoms in fully instantiated formulas.

7 Related Work

Policy Enforcement with Temporal Logic A lot of prior work addresses the problem of
runtime monitoring of policies expressed in Linear Temporal Logic (LTL) [5, 7, 10, 28, 30, 31]
and its extensions [7, 29, 30]. Although similar in the spirit of enforcing policies, the intended
deployment of our work is different: we expect our algorithm to be used for after-the-fact audit for
violations, rather than for online monitoring. Consequently, the issue of retaining only necessary
portions of logs, which is central to runtime monitoring, is largely irrelevant for our work (and
hence not considered in this paper).

Comparing only the expressiveness of the logic, our work is more advanced than all existing
work on policy enforcement. First, we enforce a large fragment of first-order temporal logic, whereas
prior work is either limited to propositional logic [5, 28, 31], or, when quantifiers are considered,
they are severely restricted [7, 29, 30]. A recent exception to such syntactic restrictions is the
work of Basin et al. [10], to which we compare in detail below. Second, no prior work considers
either subjective predicates, or the possibility of gaps in past information, both of which our partial
structures and enforcement algorithm account for.

Recent work by Basin et al. [10] considers runtime monitoring over an expressive fragment of
Metric First-order Temporal Logic. Similar to our work, Basin et al. allow quantification over
infinite domains, and use a form of mode analysis (called a safe-range analysis) to ensure finiteness
during enforcement. However, Basin et al’s mode analysis is weaker than ours; in particular, it
cannot relate the same variable in the input and output positions of two different conjuncts of
a restriction and requires that each free variable appear in at least one predicate with a finite
model. As a consequence, some policies such as αpol1 (Example 2.1), whose top-level restriction
(send(p1, p2,m) ∧ purp(m,u) ∧ . . .) contains a variable u not occurring in any predicate with a
finite model, cannot be enforced in their framework, but can be enforced in ours. Due to their goal
of runtime enforcement, Basin et al. use auxiliary data structures to cache relevant portions of the
log in memory, which may form the basis of useful optimizations in an implementation of our work.

Cederquist et al. [14] present a proof-based system for a-posteriori audit, where policy obli-
gations are discharged by constructing formal proofs. The leaves of proofs are established from
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logs, but the audit process only checks that an obligation has been satisfied somewhere in the past,
thus allowing only for obligations of the form Qϕ. Further, there is no systematic mechanism to
instantiate quantifiers in proofs. However, using connectives of linear logic, the mechanism admits
policies that rely on consumable permissions.

The idea of iteratively rewriting the policy over evolving audit logs has been considered pre-
viously [28, 31], but only for propositional logic. Bauer et al. [5] use a different approach for
iterative enforcement: they convert an LTL formula with limited first-order quantification to a
Büchi automaton and check whether the automaton accepts the input log. Further, they also
use a three-valued semantic model similar to ours, but assume past-completeness. Three-valued
structures have also been considered in work on generalized model checking [13, 19]. However, the
problems addressed in that line of work are different; the objective there is to check whether there
exist extensions of a given structure in which a formula is satisfied (or falsified).

Policy Specification Several variants of LTL have been used to specify the properties of pro-
grams, business processes and security and privacy policies [8, 9, 16, 18, 22]. Our representation of
policies and our logic, PrivacyLFP, draw inspiration from LPU [8].

Further, several access-control models have extensions for specifying usage control and future
obligations [12, 17, 20, 21, 25–27]. Some of these models assume a pre-defined notion of obliga-
tions [21, 25]. For instance, Irwin et al [21] model obligations as tuples containing the subject of
the obligation, the actions to be performed, the objects that are targets of the actions and the time
frames of the obligations. Other models leave specifications for obligations abstract [12, 20, 27].
Such specific models and the ensuing policies can be encoded in our logic using quantifiers and
temporal operators.

There also has been much work on analyzing the properties of policies represented in formal
models. For instance, Ni et al. study the interaction between obligation and authorization [25],
Irwin et al. have analyzed accountability problems with obligations [21], and Dougherty et al. have
modeled the interaction between obligations and programs [17]. These methods are orthogonal to
our objective of policy enforcement. It may be possible to adapt ideas from these papers to analyze
similar properties of policies expressed in PrivacyLFP also.

Finally, privacy languages such as EPAL [6] and privacyAPI [24] do not include obligations or
temporal modalities as primitives, and are less expressive than our framework.

8 Conclusion

We have presented an expressive and provably correct iterative method for enforcing privacy policies
that works by reducing policies, even in the face of incomplete system logs. Our method is expressive
enough to enforce real privacy legislation like HIPAA, yet tractable due to a carefully designed static
analysis. Under standard assumptions about system logs, we obtain methods to mechanically
enforce safety and co-safety properties.

Our planned next step is to implement the proposed enforcement mechanism and to test its
performance on real privacy legislation. A specific goal is to develop generic optimization and
caching techniques that encompass all forms of log incompleteness, to the extent possible. Prior
work on runtime monitoring may provide valuable insights in this regard, but a significant challenge
is to generalize it beyond past-completeness.
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A Details from Section 2

The full definition of the ϕ is shown below:

pO(t1, . . . , tn) = pO(t1, . . . , tn)

pS(t1, . . . , tn) = pS(t1, . . . , tn)

> = ⊥
⊥ = >

ϕ ∧ ψ = ϕ ∨ ψ
ϕ ∨ ψ = ϕ ∧ ψ

∀~x 6∈ S.(c ⊃ ϕ) = ∃~x 6∈ S.(c ∧ ϕ)

∃~x 6∈ S.(c ∧ ϕ) = ∀~x 6∈ S.(c ⊃ ϕ)

The full translation (•)τ from the temporal logic to the sublogic is shown below:
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(pO(t1, . . . , tn))τ = pO(t1, . . . , tn, τ)
(>)τ = >
(⊥)τ = ⊥

(c1 ∧ c2)τ = (c1)
τ ∧ (c2)

τ

(c1 ∨ c2)τ = (c1)
τ ∨ (c2)

τ

(∃x.c)τ = ∃x.(c)τ

(pO(t1, . . . , tn))τ = pO(t1, . . . , tn, τ)
(pS(t1, . . . , tn))τ = pS(t1, . . . , tn, τ)

(>)τ = >
(⊥)τ = ⊥

(α ∧ β)τ = (α)τ ∧ (β)τ

(α ∨ β)τ = (α)τ ∨ (β)τ

(¬α)τ = (α)τ

(∀~x.(c ⊃ α))τ = ∀~x.((c)τ ⊃ (α)τ )
(∃~x.(c ∧ α))τ = ∃~x.((c)τ ∧ (α)τ )

(↓x.α)τ = (α[τ/x])τ

(α Sβ)τ = ∃τ ′.(in(τ ′, 0, τ) ∧ (β)τ
′

∧ (∀τ ′′.((in(τ ′′, τ ′, τ) ∧ τ ′ 6= τ ′′)

⊃ (α)τ
′′
)))

(αUβ)τ = ∃τ ′.(in(τ ′, τ,∞) ∧ (β)τ
′

∧ (∀τ ′′.((in(τ ′′, τ, τ ′) ∧ τ ′′ 6= τ ′)

⊃ (α)τ
′′
)))

(`α)τ = ∀τ ′.(in(τ ′, 0, τ) ⊃ (α)τ
′
)

(0α)τ = ∀τ ′.(in(τ ′, τ,∞) ⊃ (α)τ
′
)

B Proofs from Section 4

This appendix contains proofs of theorems presented in Section 4. The proofs are presented in an
order different from the order of theorems in the main body of the paper because of dependencies
in the proofs.

Lemma B.1 (Monotonicity). L′ ≥ L and L |= ϕ imply L′ |= ϕ.

Proof. By induction on ϕ.

Lemma B.2 (Consistency). For all L and ϕ, either L 6|= ϕ or L 6|= ϕ.

Proof. By induction on ϕ.

Theorem B.3 (Correctness of ŝat; Theorem 4.5). If ŝat(L, c) is defined then for any substitution
σ′ with dom(σ′) ⊇ fv(c), L |= cσ′ iff there is a substitution σ ∈ ŝat(L, c) such that σ′ ≥ σ.

Proof. By induction on c and case analysis of its top-level constructor.
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Case. c = po(t1, . . . , tn). Then, ŝat(L, c) = sat(L, c). The result follows from the condition that
sat is required to satisfy (Section 4.3).

Case. c = >. Then, ŝat(L, c) = {•}. If L |= cσ′, σ′ trivially extends • by definition. Conversely,
any substitution σ′ trivially satisfies L |= >σ′.

Case. c = ⊥. Then, ŝat(L, c) = {}. The result is vacuously true in both directions because
L 6|= ⊥σ′, and σ′ 6∈ {}.

Case. c = c1 ∧ c2. Then, ŝat(L, c) =
⋃
σ1∈ŝat(L,c1) σ1 + ŝat(L, c2σ1). Clearly, if this exists, then

ŝat(L, c1) must be defined also, and for each σ1 ∈ ŝat(L, c1), ŝat(L, c2σ1) must also be defined.
Suppose L |= (c1 ∧ c2)σ

′. By definition of |=, we get L |= c1σ
′ and L |= c2σ

′. By the
i.h., the former implies that there is a σ1 ∈ ŝat(L, c1) such that σ′ ≥ σ1. This also implies
that c2σ

′ = (c2σ1)σ
′. So, L |= c2σ

′ implies L |= (c2σ1)σ
′. Consequently, by the i.h. on c2σ1,

there must be a σ2 ∈ ŝat(L, c2σ1) such that σ′ ≥ σ2. It follows that σ′ ≥ σ1 + σ2. Clearly,
(σ1 + σ2) ∈ (σ1 + ŝat(L, c2σ1)) ⊆ (

⋃
σ1∈ŝat(L,c1) σ1 + ŝat(L, c2σ1)) = ŝat(L, c), as required.

Conversely, suppose that there is a σ ∈
⋃
σ1∈ŝat(L,c1) σ1 + ŝat(L, c2σ1) and σ′ ≥ σ with

dom(σ′) ⊇ fv(σ). We need to show that L |= (c1 ∧ c2)σ′ or, equivalently, L |= c1σ
′ and L |= c2σ

′.
By set-theory, there must be a σ1 ∈ ŝat(L, c1) and a σ2 ∈ ŝat(L, c2σ1) such that σ = σ1 + σ2.
Clearly, σ′ ≥ σ1. So, by the i.h., we immediately have L |= c1σ

′. Similarly, σ′ ≥ σ2. So, by i.h. on
c2σ1, L |= c2σ1σ

′. But, c2σ1σ
′ = c2σ

′. Therefore, L |= c2σ
′.

Case. c = c1 ∨ c2. Then, ŝat(L, c) = ŝat(L, c1) ∪ ŝat(L, c2). If this is defined, then, clearly, both
ŝat(L, c1) and ŝat(L, c2) must be defined.

Suppose L |= (c1 ∨ c2)σ
′. By definition of |=, we get that either L |= c1σ

′ or L |= c2σ
′.

We consider here the former case (the latter is similar). So L |= c1σ
′. By the i.h., there is a

σ ∈ ŝat(L, c1) such that σ′ ≥ σ1. The proof is complete by noting that σ1 ∈ ŝat(L, c1) ∈ ŝat(L, c).
Conversely, suppose that there is a σ ∈ ŝat(L, c1)∪ ŝat(L, c2) and σ′ ≥ σ with dom(σ′) ⊇ fv(σ).

We need to show that L |= (c1 ∨ c2)σ
′ or, equivalently, either L |= c1σ

′ or L |= c2σ
′. From

σ ∈ ŝat(L, c1) ∪ ŝat(L, c2), we get that either σ ∈ ŝat(L, c1) or σ ∈ ŝat(L, c2). Consider the
former case (the latter is similar): σ ∈ ŝat(L, c1). By i.h. on c1, we immediately get L |= c1σ

′, as
required.

Case. c = ∃x.c′. Then, ŝat(L, c) = ŝat(L, c′)\{x}. If this is defined, then, clearly, ŝat(L, c′) must
also be defined.

Suppose L |= (∃x.c′)σ′. By definition of |=, there must be a t such that L |= c′[t/x]σ′. By
i.h. on c′, there must be a σ ∈ ŝat(L, c′) such that (σ′ + [x 7→ t]) ≥ σ. Clearly, σ′ ≥ σ\{x} and
σ\{x} ∈ ŝat(L, c), as required.

Conversely, suppose that there is a σ ∈ ŝat(L, c′)\{x} and σ′ ≥ σ with dom(σ′) ⊇ fv(c). We
need to show that L |= cσ′. Because σ ∈ ŝat(L, c′)\{x}, there is a σ′′ ∈ ŝat(L, c′) and a t such
that σ′′ = σ + [x 7→ t]. Clearly, σ′ + [x 7→ t] ≥ σ + [x 7→ t] = σ′′. By i.h. on c′, L |= c′[t/x]σ′, which
implies (by definition of |=) that L |= (∃x.c′)σ′, i.e., L |= cσ′.

Lemma B.4 (Duality of reduce). reduce(L, ϕ) = reduce(L, ϕ).
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Proof. By a straightforward induction on ϕ. We show some representative cases below.

Case. ϕ = P . Then,

reduce(L, P ) =


> if ρL(P ) = tt

⊥ if ρL(P ) = ff

P if ρL(P ) = uu

We consider all three possible subcases on ρL(P ). If ρL(P ) = tt, then, by definition, ρL(P ) = ff,
so reduce(L, P ) = ⊥ = > = reduce(L, P ). The case of ρL(P ) = ff is similar. For ρL(P ) = uu, we
have ρL(P ) = uu, so reduce(L, P ) = P = reduce(L, P ).

Case. ϕ = ∀~x.(c ⊃ ϕ′). Then, reduce(L, ϕ) is calculated as follows:

reduce(L,∀~x.(c ⊃ ϕ′)) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ′[~ti/~x])}ni=1

ψ′ ← ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′)
return
ψ1 ∧ . . . ∧ ψn ∧ ψ′

Note that ϕ = ∃~x.(c ∧ ϕ′). Consequently, reduce(L, ϕ) is calculated as follows, where we have
renamed some bound variables to distinguish them from those in the above display.

reduce(L,∃~x.(c ∧ ϕ′)) = let
{σ′1, . . . , σ′n} ← ŝat(L, c)
{~t′i ← σ′i(~x)}ni=1

S′ ← {~t′1, . . . , ~t′n}
{ψ′i ← reduce(L, ϕ′[~t′i/~x])}ni=1

ψ′′ ← ∃~x.((c ∧ ~x 6∈ S′) ∧ ϕ′)
return
ψ′1 ∨ . . . ∨ ψ′n ∨ ψ′′

We must have σi = σ′i (because both are calculated using ŝat(L, c)) and, consequently, ~ti = ~t′i
and S = S′. Thus, by the i.h., we get that reduce(L, ϕ′[~t′i/~x]) = reduce(L, ϕ′[~ti/~x]), i.e., ψ′i = ψi.
Also observe that directly from definition of duality, ψ′′ = ψ′. Thus, reduce(L, ϕ) = ψ′1 ∨ . . . ∨
ψ′n ∨ ψ′′ = ψ1 ∨ . . . ∨ ψn ∨ ψ′ = ψ1 ∧ . . . ∧ ψn ∧ ψ′ = reduce(L, ϕ).

Theorem B.5 (Correctness of reduce; Theorem 4.2). If reduce(L, ϕ) = ψ and L′ ≥ L, then
(1) L′ |= ϕ iff L′ |= ψ and (2) L′ |= ϕ iff L′ |= ψ.

Proof. First observe that (1) implies (2). Why? Suppose (1) holds for all ϕ. We need to show that
(2) holds. So suppose reduce(L, ϕ) = ψ and L′ ≥ L. By Lemma B.4, reduce(L, ϕ) = ψ. Applying
the assumed (1) to ϕ instead of ϕ, we immediately deduce that L′ |= ϕ iff L′ |= ψ, as required.

Hence, we only need to prove (1). We do that by induction on ϕ, and a case analysis of its
top-level constructor.
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Case. ϕ = P . Then,

reduce(L, ϕ) =


> if ρL(P ) = tt

⊥ if ρL(P ) = ff

P if ρL(P ) = uu

We consider three subcases on the value of ρL(P ).

Subcase. ρL(P ) = tt. Here, ψ = >. First, assume that L′ |= ϕ. Then, we need to prove that
L′ |= ψ, i.e, L′ |= >. This follows directly from the definition of |=. Conversely, assume that
L′ |= ψ. We need to prove that L′ |= P . By definition, this is equivalent to proving ρL′(P ) = tt,
which follows immediately from the subcase assumption ρL(P ) = tt and the assumption L′ ≥ L.

Subcase. ρL(P ) = ff. Here ψ = ⊥. First, assume that L′ |= ϕ. We need to show that L′ |= ψ.
From the subcase assumption, we have ρL(P ) = ff, so the definition of L′ ≥ L implies that
ρL′(P ) = ff. However, L′ |= ϕ implies L′ |= P , i.e., ρL′(P ) = tt – a contradiction. Thus, L′ |= ψ
holds vacuously.

Conversely, suppose that L′ |= ψ, i.e., L′ |= ⊥. By definition of |=, this is a contradiction, so
L′ |= ϕ holds vacuously, as required.

Subcase. ρL(P ) = uu. Here, ϕ = ψ = P , so the case is trivial.

Case. ϕ = >. Then, ψ = reduce(L, ϕ) = reduce(L,>) = >. Since ϕ = ψ, the case is trivial.

Case. ϕ = ⊥. Then, ψ = reduce(L, ϕ) = reduce(L,⊥) = ⊥. Since ϕ = ψ, the case is trivial.

Case. ϕ = ϕ1 ∧ ϕ2. Then, ψ = reduce(L, ϕ1) ∧ reduce(L, ϕ2), so both the conjuncts exist.
First, suppose that L′ |= ϕ, i.e., L′ |= ϕ1 and L′ |= ϕ2. By the i.h., L′ |= reduce(L, ϕ1) and
L′ |= reduce(L, ϕ2) or, equivalently, L′ |= ψ.

Conversely, suppose that L′ |= ψ. Then, L′ |= reduce(L, ϕ1) and L′ |= reduce(L, ϕ2). By the
i.h., L′ |= ϕ1 and L′ |= ϕ2, i.e., L′ |= ϕ.

Case. ϕ = ϕ1 ∨ ϕ2. Then, ψ = reduce(L, ϕ1) ∨ reduce(L, ϕ2), so both the disjuncts exist. First,
suppose that L′ |= ϕ, i.e., either L′ |= ϕ1 or L′ |= ϕ2. By the i.h., either L′ |= reduce(L, ϕ1) or
L′ |= reduce(L, ϕ2). Equivalently, L′ |= ψ.

Conversely, suppose that L′ |= ψ. Then, either L′ |= reduce(L, ϕ1) or L′ |= reduce(L, ϕ2). By
the i.h., either L′ |= ϕ1 or L′ |= ϕ2. Equivalently, L′ |= ϕ.

Case. ϕ = ∀~x.(c ⊃ ϕ′). Then, ψ = reduce(L, ϕ) is calculated as follows.

reduce(L,∀~x.(c ⊃ ϕ′)) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ′[~ti/~x])}ni=1

ψ′ ← ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′)
return
ψ1 ∧ . . . ∧ ψn ∧ ψ′
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So ψ = ψ1 ∧ . . . ∧ ψn ∧ ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′). First, suppose that L′ |= ϕ, i.e., L′ |=
∀~x.(c ⊃ ϕ′). We need to prove that L′ |= ψ, i.e., L′ |= ψi and L′ |= ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′). We
first prove that L′ |= ψi. Because reduce(L, ϕ′[~ti/~x]) = ψi, by the i.h., it suffices to show that
L′ |= ϕ′[~ti/~x]. From the definition of L′ |= ∀~x.(c ⊃ ϕ′), either L′ |= c[~ti/~x] or L′ |= ϕ′[~ti/~x]. Hence,
it suffices to prove that L′ 6|= c[~ti/~x]. Suppose, for the sake of contradiction, that L′ |= c[~ti/~x].
Since σi ∈ ŝat(L, c), Theorem B.3 yields L |= cσi, i.e., L |= c[~ti/~x] (note that because ∀~x.(c ⊃ ϕ′)
is closed, fv(c) ⊆ ~x; so c[~ti/~x] = cσi). Hence, by Lemma B.1, L′ |= c[~ti/~x], which, by Lemma B.2,
contradicts the earlier fact L′ |= c[~ti/~x].

Next, we show that L′ |= ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′). Following the definition of |=, pick any ~t. We
show that either L′ |= (c ∧ ~x 6∈ S)[~t/~x] or L′ |= ϕ′[~t/~x]. Since we assumed that L′ |= ∀~x.(c ⊃ ϕ′),
either L′ |= c[~t/~x] or L′ |= ϕ′[~t/~x]. The proof is complete by observing that L′ |= c[~t/~x] implies
L′ |= (c ∧ ~x 6∈ S)[~t/~x].

Conversely, assume that L′ |= ψ, i.e., L′ |= ψi and L′ |= ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′). We need to
prove that L′ |= ϕ, i.e., L′ |= ∀~x.(c ⊃ ϕ′). Following the definition of |=, pick any ~t. We need to
prove that either L′ |= c[~t/~x] or L′ |= ϕ′[~t/~x]. We consider two subcases. Either ~t ∈ S or ~t 6∈ S.

Subcase. ~t ∈ S. Then, ~t = ~ti for some i. Since reduce(L, ϕ′[~ti/~x]) = ψi and L′ |= ψ′i, by the i.h.
we get L′ |= ϕ′[~ti/~x], as required.

Subcase. ~t 6∈ S. We already know that L′ |= ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′). So, either L′ |=
(c ∧ ~x 6∈ S)[~t/~x] or L′ |= ϕ′[~t/~x]. If the latter, we are done, so assume the former. Thus, L′ |=
(c ∧ ~x 6∈ S)[~t/~x], i.e., L′ |= c[~t/~x] ∨ ~t ∈ S. This immediately implies that either L′ |= c[~t/~x] or
~t ∈ S. The former case is sufficient for our purpose, and the latter case contradicts the subcase
assumption.

Case. ϕ = ∃~x.(c ∧ ϕ′). Then, reduce(L, ϕ) is calculated as follows.

reduce(L,∃~x.(c ∧ ϕ′)) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ′[~ti/~x])}ni=1

ψ′ ← ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ′)
return
ψ1 ∨ . . . ∨ ψn ∨ ψ′

So, ψ = ψ1 ∨ . . . ∨ ψn ∨ ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ′). First suppose that L′ |= ϕ. We show
that L′ |= ψ. Following the definition of |= on L′ |= ϕ, we obtain a ~t such that L′ |= c[~t/~x] and
L′ |= ϕ′[~t/~x]. We consider two subcases: either ~t ∈ S or ~t 6∈ S.

Subcase. ~t ∈ S. So, ~t = ~ti for some i and from L′ |= ϕ′[~t/~x] we obtain L′ |= ϕ′[~ti/~x]. Since
reduce(L, ϕ′[~ti/~x]) = ψi, by the i.h., we get L′ |= ψi, which immediately implies L′ |= ψ.

Subcase. ~t 6∈ S. Combining this and L′ |= c[~t/~x], we get L′ |= (c ∧ ~x 6∈ S)[~t/~x]. Since L′ |= ϕ′[~t/~x],
we derive from the definition of |= that L′ |= ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ′). This immediately yields L′ |= ψ.
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Conversely, suppose that L′ |= ψ. We show that L′ |= ϕ. L′ |= ψ implies that either L′ |= ψi
for some i or L′ |= ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ′). We consider both subcases below.

Subcase. L |= ψi. Since reduce(L, ϕ′[~ti/~x]) = ψi, by the i.h., L′ |= ϕ′[~ti/~x]. Further, observe that
because σi ∈ ŝat(L, c) and dom(σi) ⊇ ~x ⊇ fv(c) (the latter because ∃~x.(c ⊃ ϕ′) must be closed),
Theorem B.3 yields L |= cσi and, hence, L |= c[~ti/~x]. By Lemma B.1, L′ |= c[~ti/~x]. Since we have
already derived L′ |= ϕ′[~ti/~x], the definition of |= yields that L′ |= ∃~x.(c ∧ ϕ′), as required.

Subcase. L′ |= ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ′). Thus there must be a ~t such that L′ |= c[~t/~x], ~t 6∈ S,
and L′ |= ϕ′[~t/~x]. The first and third facts in the last sentence imply that L′ |= ∃~x.(c ∧ ϕ′), as
required.

Theorem B.6 (Totality of ŝat; Theorem 4.7). If χI ` c : χO, then for all structures L and
all substitutions σ with dom(σ) ⊇ χI , ŝat(L, cσ) is defined and, further, for each substitution
σ′ ∈ ŝat(L, cσ), χI ∪ dom(σ′) ⊇ χO.

Proof. By induction on the given derivation of χI ` c : χO and case analysis of its last rule.

Case.

∀k ∈ I(pO). fv(tk) ⊆ χI χO = χI ∪ (
⋃

j∈O(pO)

fv(tj))

χI ` pO(t1, . . . , tn) : χO
We are given σ such that dom(σ) ⊇ χI . From this and the first premise it follows that

∀k ∈ I(pO). ground(tkσ). Thus, by definition, sat(L, pO(t1, . . . , tn)σ) is defined. Consequently,
ŝat(L, pO(t1, . . . , tn)σ), which equals sat(L, pO(t1, . . . , tn)σ) is also defined. Pick any σ′ ∈
sat(L, pO(t1, . . . , tn)σ). By definition of sat, dom(σ′) ⊇

⋃
j∈O(pO) fv(tj). Consequently, χI ∪

dom(σ′) ⊇ χI ∪ (
⋃
j∈O(pO) fv(tj)) ⊇ χO, where the last relation follows from the second premise.

Case.
χI ` > : χI

Suppose dom(σ) ⊇ χI . Note that ŝat(L,>σ) = ŝat(L,>) = {•} is always defined. If σ′ ∈ {•},
then σ′ = •. Clearly, χI ∪ dom(σ′) = χI ∪ dom(•) = χI = χO.

Case.
χI ` ⊥ : χI

Suppose dom(σ) ⊇ χI . Note that ŝat(L,⊥σ) = ŝat(L,⊥) = {} is always defined. Because there
cannot be a σ′ ∈ {}, the rest of the proof holds vacuously in this case.

Case.
χI ` c1 : χ χ ` c2 : χO

χI ` c1 ∧ c2 : χO
Suppose dom(σ) ⊇ χI . By i.h. on the first premise, ŝat(L, c1σ) is defined. Let ŝat(L, c1σ) =

{σ1, . . . , σn}. Also by the i.h., χI ∪ dom(σi) ⊇ χ. Call this fact (A). Since dom(σ) ⊇ χI , fact
(A) implies dom(σ + σi) ⊇ χ. Using the latter, by i.h. on the second premise and each of
{σ + σ1, . . . , σ + σn}, we obtain that each of ŝat(L, c2σσi) are also defined for each i and ∀σ′i ∈
ŝat(L, c2σσi), χ ∪ dom(σ′i) ⊇ χO. Call the last fact (B). We immediately have that ŝat(L, (c1 ∧
c2)σ) =

⋃
σ1∈ŝat(L,c1σ) ŝat(L, c2σσ1) is also defined.

Pick any σ′ ∈ ŝat(L, (c1 ∧ c2)σ). Then for some i and some σ′i ∈ ŝat(L, c2σσi), we have
σ′ = σi + σ′i. We want to show that χI ∪ dom(σ′) ⊇ χO. Or, equivalently, χI ∪ dom(σi + σ′i) ⊇ χO.
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However, χI∪dom(σi+σ
′
i) = χI∪dom(σi)∪dom(σ′i) ⊇ χ∪dom(σ′i) ⊇ χO, where the last two relations

follow from facts (A) and (B), respectively.

Case.
χI ` c1 : χ1 χI ` c2 : χ2

χI ` c1 ∨ c2 : χ1 ∩ χ2

Suppose dom(σ) ⊇ χI . By i.h. on the first premise, ŝat(L, c1σ) is defined and ∀σ′ ∈ ŝat(L, c1σ),
χI ∪dom(σ′) ⊇ χ1. Call this fact (A). Similarly, by i.h. on the second premise, ŝat(L, c2σ) is defined
and ∀σ′ ∈ ŝat(L, c2σ), χI ∪ dom(σ′) ⊇ χ2. Call this fact (B). By definition of ŝat, ŝat(L, (c1 ∨
c2)σ) = ŝat(L, c1σ) ∪ ŝat(L, c2σ) is defined.

Pick any σ′ ∈ ŝat(L, c1σ) ∪ ŝat(L, c2σ). We want to show χI ∪ dom(σ′) ⊇ χO. Either
σ′ ∈ ŝat(L, c1σ) or σ′ ∈ ŝat(L, c2σ). Consider the former case (the other case is similar). We
have χI ∪ dom(σ′) ⊇ χ1 ⊇ χ1 ∩ χ2 = χO, where the first relation follows from fact (A).

Case.
χI ` c : χ′O

χI ` ∃x.c : χ′O\{x}
Suppose dom(σ) ⊇ χI . By i.h. on the premise, ŝat(L, cσ) is defined and ∀σ′′ ∈ ŝat(L, cσ),

χI ∪ dom(σ′′) ⊇ χ′O. Call the latter fact (A). By definition of ŝat, ŝat(L,∃x.c) = ŝat(L, c)\{x} is
defined.

Pick any σ′ ∈ ŝat(L, c)\{x}. We want to prove that χI ∪ dom(σ′) ⊇ χ′O\{x}. However,
σ′ ∈ ŝat(L, c)\{x} implies (by definition) that there is a σ′′ ∈ ŝat(L, c) such that σ′ = σ′′\{x}.
Thus, χI ∪ dom(σ′) = χI ∪ (dom(σ′′)\{x}) ⊇ χ′O\{x}. The last inclusion follows from fact (A).

Lemma B.7. If χI ` c : χO, then χO ⊆ χI ∪ fv(c).

Proof. By a straightforward induction on the given derivation of χI ` c : χO.

Lemma B.8 (Mode substitution). The following hold:

1. If χI ` c : χO, then χI\dom(σ) ` cσ : χO\dom(σ).

2. If χ ` ϕ, then χ\dom(σ) ` ϕσ.

Proof. By induction on the given derivations of χI ` c : χO and χ ` ϕ.

Lemma B.9 (Mode weakening). The following hold:

1. If χI ` c : χO and χ′I ⊇ χI , then there is a χ′O ⊇ χO such that χ′I ` c : χ′O.

2. If χ ` ϕ and χ′ ⊇ χ, then χ′ ` ϕ.

Proof. By induction on the given derivations of χI ` c : χO and χ ` ϕ.

Theorem B.10 (Totality of reduce; Theorem 4.8). If ` ϕ then there is a ψ such that reduce(L, ϕ) =
ψ and ` ψ.

Proof. We prove a more general result: If χ ` ϕ and dom(σ) ⊇ χ, then there is a ψ such that
reduce(L, ϕσ) = ψσ and χ ` ψ. The statement of the theorem follows by choosing χ = {} and
σ = • in this result. We proceed by induction on the assumed derivation of χ ` ϕ, and case analysis
of its last rule.
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Case.
∀k. fv(tk) ⊆ χ
χ ` p(t1, . . . , tk)

Here, ϕ = p(t1, . . . , tk). Suppose dom(σ) ⊇ χ. Due to the premise, p(t1, . . . , tn)σ is ground.
Hence, ŝat(L, p(t1, . . . , tn)σ) is defined. Depending on whether it is tt, ff, or uu,
reduce(L, p(t1, . . . , tn)σ) is >, ⊥ or p(t1, . . . , tn)σ respectively. Accordingly, we choose ψ = >,
ψ = ⊥ or ψ = p(t1, . . . , tn). In each case, χ ` ψ.

Case.
χ ` >

Here, ϕ = >. Suppose dom(σ) ⊇ χ. Clearly, we can choose ψ = > because reduce(L,>σ) =
> = ψσ and χ ` >, i.e., χ ` ψ.

Case.
χ ` ⊥

Here, ϕ = ⊥. Suppose dom(σ) ⊇ χ. Clearly, we can choose ψ = ⊥ because reduce(L,⊥σ) =
⊥ = ψσ and χ ` ⊥, i.e., χ ` ψ.

Case.
χ ` ϕ1 χ ` ϕ2

χ ` ϕ1 ∧ ϕ2

Here, ϕ = ϕ1 ∧ ϕ2. Suppose dom(σ) ⊇ χ. By i.h. on the first premise, there is a ψ1 such that
reduce(L, ϕ1σ) = ψ1σ and χ ` ψ1. Similarly, by i.h. on the second premise, there is a ψ2 such
that reduce(L, ϕ2σ) = ψ2σ and χ ` ψ2. By definition of reduce, reduce(L, ϕσ) = reduce(L, (ϕ1 ∧
ϕ2)σ) = reduce(L, ϕ1σ) ∧ reduce(L, ϕ2σ) = ψ1σ ∧ ψ2σ. Further, χ ` ψ1 ∧ ψ2 follows from χ ` ψ1

and χ ` ψ2. So we can choose ψ = ψ1 ∧ ψ2.

Case.
χ ` ϕ1 χ ` ϕ2

χ ` ϕ1 ∨ ϕ2

Here, ϕ = ϕ1 ∨ ϕ2. Suppose dom(σ) ⊇ χ. By i.h. on the first premise, there is a ψ1 such that
reduce(L, ϕ1σ) = ψ1σ and χ ` ψ1. Similarly, by i.h. on the second premise, there is a ψ2 such
that reduce(L, ϕ2σ) = ψ2σ and χ ` ψ2. By definition of reduce, reduce(L, ϕσ) = reduce(L, (ϕ1 ∨
ϕ2)σ) = reduce(L, ϕ1σ) ∨ reduce(L, ϕ2σ) = ψ1σ ∨ ψ2σ. Further, χ ` ψ1 ∨ ψ2 follows from χ ` ψ1

and χ ` ψ2. So we can choose ψ = ψ1 ∨ ψ2.

Case.
χ ` c : χO ~x ⊆ χO fv(c) ⊆ χ ∪ ~x χO ` ϕ′

χ ` ∀~x.(c ⊃ ϕ′)
Here, ϕ = ∀~x.(c ⊃ ϕ′). Suppose dom(σ) ⊇ χ. By Theorem B.6 on the first premise, there is a set

{σ1, . . . , σn} = ŝat(L, cσ) such that for each σi, χ ∪ dom(σi) ⊇ χO. Call the latter fact (A). From
the second premise and fact (A) we also derive that χ∪ dom(σi) ⊇ ~x. Since ~x must be chosen fresh
in the premise, this also implies that dom(σi) ⊇ ~x. Consequently, σi(~x) is defined. Let σi(~x) = ~ti
and let S = {~t1, . . . , ~tn}. Further, note that by Lemma B.7 on the first premise, χO ⊆ χ ∪ fv(c).
Hence, from the third premise we obtain χO ⊆ χ ∪ χ ∪ ~x = χ ∪ ~x. So, dom(σ) ∪ ~x ⊇ χ ∪ ~x ⊇ χO.
Call this fact (B). From the i.h. applied to the last premise and fact (B) we get the existence of ψi
such that reduce(L, ϕ′σ[~ti/~x]) = ψiσ[~ti/~x] and χO ` ψi. Call this fact (C).

By definition of reduce, we obtain reduce(L, ϕσ) = ψ1σ[~t1/~x] ∧ . . . ∧ ψnσ[~tn/~x] ∧ ψ′σ, where
ψ′ = ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′). Choose ψ = ψ1[~t1/~x] ∧ . . . ∧ ψn[~tn/~x] ∧ ψ′. It only remains to show
that χ ` ψ. This is equivalent to showing that χ ` ψi[~ti/~x] and χ ` ψ′. The latter, which is equal to
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χ ` ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′), follows from the four premises of the rule above. It remains to show that
χ ` ψi[~ti/~x]. Applying Lemma B.8 to fact(C), we derive that χO\~x ` ψi[~ti/~x]. Since we already
derived that χO ⊆ χ ∪ ~x, we also have χO\~x ⊆ χ. Hence, by Lemma B.9, we get χ ` ψi[~ti/~x], as
required.

Case.
χ ` c : χO ~x ⊆ χO fv(c) ⊆ χ ∪ ~x χO ` ϕ′

χ ` ∃~x.(c ∧ ϕ′)
Here, ϕ = ∃~x.(c ∧ ϕ′). Suppose dom(σ) ⊇ χ. By Theorem B.6 on the first premise, there is a set

{σ1, . . . , σn} = ŝat(L, cσ) such that for each σi, χ ∪ dom(σi) ⊇ χO. Call the latter fact (A). From
the second premise and fact (A) we also derive that χ∪ dom(σi) ⊇ ~x. Since ~x must be chosen fresh
in the premise, this also implies that dom(σi) ⊇ ~x. Consequently, σi(~x) is defined. Let σi(~x) = ~ti
and let S = {~t1, . . . , ~tn}. Further, note that by Lemma B.7 on the first premise, χO ⊆ χ ∪ fv(c).
Hence, from the third premise we obtain χO ⊆ χ ∪ χ ∪ ~x = χ ∪ ~x. So, dom(σ) ∪ ~x ⊇ χ ∪ ~x ⊇ χO.
Call this fact (B). From the i.h. applied to the last premise and fact (B) we get the existence of ψi
such that reduce(L, ϕ′σ[~ti/~x]) = ψiσ[~ti/~x] and χO ` ψi. Call this fact (C).

By definition of reduce, we obtain reduce(L, ϕσ) = ψ1σ[~t1/~x] ∨ . . . ∨ ψnσ[~tn/~x] ∨ ψ′σ, where
ψ′ = ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ′). Choose ψ = ψ1[~t1/~x] ∨ . . . ∨ ψn[~tn/~x] ∨ ψ′. It only remains to show
that χ ` ψ. This is equivalent to showing that χ ` ψi[~ti/~x] and χ ` ψ′. The latter, which is equal to
χ ` ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ′), follows from the four premises of the rule above. It remains to show that
χ ` ψi[~ti/~x]. Applying Lemma B.8 to fact(C), we derive that χO\~x ` ψi[~ti/~x]. Since we already
derived that χO ⊆ χ ∪ ~x, we also have χO\~x ⊆ χ. Hence, by Lemma B.9, we get χ ` ψi[~ti/~x], as
required.

Lemma B.11 (Totality of atoms). Suppose χ ` ϕ and dom(σ) ⊇ χ. Then, atoms(L, ϕσ) is defined
and ground.

Proof. By induction on the given derivation of χ ` ϕ and case analysis of its last rule.

Case.
∀k. fv(tk) ⊆ χ
χ ` p(t1, . . . , tk)

Here ϕ = p(t1, . . . , tk). From the premise and given condition dom(σ) ⊇ χ, we know that
p(t1, . . . , tk)σ is ground. Clearly, then atoms(L, p(t1, . . . , tk)σ) = {p(t1, . . . , tk)σ} is defined and
ground.

Case.
χ ` >

Here ϕ = >. So atoms(L, ϕσ) = atoms(L,>) = {} is defined and ground.

Case.
χ ` ⊥

Here ϕ = ⊥. So atoms(L, ϕσ) = atoms(L,⊥) = {} is defined and ground.

Case.
χ ` ϕ1 χ ` ϕ2

χ ` ϕ1 ∧ ϕ2

Here ϕ = ϕ1 ∧ ϕ2. By the i.h. applied to the premises, atoms(L, ϕiσ) for i = 1, 2 is defined and
ground. It follows that atoms(L, ϕσ) = atoms(L, ϕ1σ ∧ ϕ2σ) = atoms(L, ϕ1σ) ∪ atoms(L, ϕ2σ) is
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also defined and ground.

Case.
χ ` ϕ1 χ ` ϕ2

χ ` ϕ1 ∨ ϕ2

Here ϕ = ϕ1 ∨ ϕ2. By the i.h. applied to the premises, atoms(L, ϕiσ) for i = 1, 2 is defined and
ground. It follows that atoms(L, ϕσ) = atoms(L, ϕ1σ ∨ ϕ2σ) = atoms(L, ϕ1σ) ∪ atoms(L, ϕ2σ) is
also defined and ground.

Case.
χ ` c : χO ~x ⊆ χO fv(c) ⊆ χ ∪ ~x χO ` ϕ′

χ ` ∀~x.(c ⊃ ϕ′)
Here ϕ = ∀~x.(c ⊃ ϕ′). By Theorem B.6 on the first premise and the given condition dom(σ) ⊇ χ,

ŝat(L, cσ) is defined and for all σ′ ∈ ŝat(L, cσ), χ∪dom(σ′) ⊇ χO. The latter implies that for all σ′ ∈
ŝat(L, cσ), dom(σσ′) ⊇ χO. By i.h. on the last premise, for each σ′ ∈ ŝat(L, cσ), atoms(L, ϕ′σσ′) is
defined and ground. Hence, by definition, atoms(L, ϕσ) =

⋃
σ′∈ŝat(L,cσ) atoms(L, ϕ′σσ′) is defined

and ground.

Case.
χ ` c : χO ~x ⊆ χO fv(c) ⊆ χ ∪ ~x χO ` ϕ′

χ ` ∃~x.(c ∧ ϕ′)
Here ϕ = ∃~x.(c ∧ ϕ′). By Theorem B.6 on the first premise and the given condition dom(σ) ⊇ χ,

ŝat(L, cσ) is defined and for all σ′ ∈ ŝat(L, cσ), χ∪dom(σ′) ⊇ χO. The latter implies that for all σ′ ∈
ŝat(L, cσ), dom(σσ′) ⊇ χO. By i.h. on the last premise, for each σ′ ∈ ŝat(L, cσ), atoms(L, ϕ′σσ′) is
defined and ground. Hence, by definition, atoms(L, ϕσ) =

⋃
σ′∈ŝat(L,cσ) atoms(L, ϕ′σσ′) is defined

and ground.

Theorem B.12 (Minimality; Theorem 4.3). Suppose ` ϕ and reduce(L, ϕ) = ψ. Then atoms(L, ψ) ⊆
atoms(L, ϕ) ∩ {P | ρL(P ) = uu}.

Proof. By Lemma B.11, atoms(L, ϕ) is defined. Further, by Theorem B.10, ` ψ, so atoms(L, ψ) is
also defined. Hence, the statement of the theorem makes sense. We prove the relation atoms(L, ψ) ⊆
atoms(L, ϕ) ∩ {P | ρL(P ) = uu} by induction on ϕ and case analysis of its form. Let U =
{P | ρL(P ) = uu}. We want to show that atoms(L, ψ) ⊆ atoms(L, ϕ) ∩ U .

Case. ϕ = P where P is either a subjective or an objective atom. We perform a sub-case analysis
on ρL(P ).

Subcase. ρL(P ) = tt. Then, ψ = >. So, trivially, atoms(ψ) = {} ⊆ atoms(L, ϕ) ∩ U .

Subcase. ρL(P ) = ff. Then, ψ = ⊥. So, trivially, atoms(ψ) = {} ⊆ atoms(L, ϕ) ∩ U .

Subcase. ρL(P ) = uu. Then, ψ = P . Further, in this case, atoms(L, ψ) = {P} = atoms(L, ϕ) and
P ∈ U (the latter by definition of U). Clearly, atoms(L, ψ) ⊆ atoms(L, ϕ) ∩ U .

Case. ϕ = >. Here, ψ = >. So, trivially, atoms(ψ) = {} ⊆ atoms(L, ϕ) ∩ U .

Case. ϕ = ⊥. Here, ψ = ⊥. So, trivially, atoms(ψ) = {} ⊆ atoms(L, ϕ) ∩ U .
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Case. ϕ = ϕ1 ∧ ϕ2. Then, ψ = reduce(L, ϕ1) ∧ reduce(L, ϕ2). By inversion on the derivation
of ` ϕ, we know that ` ϕ1 and ` ϕ2. Hence, by the i.h., for i = 1, 2, atoms(L, reduce(L, ϕi)) ⊆
atoms(L, ϕi)∩U . Thus, we have, atoms(L, ψ) = atoms(L, reduce(L, ϕ1))∪atoms(L, reduce(L, ϕ2)) ⊆
(atoms(L, ϕ1) ∩ U) ∪ (atoms(L, ϕ2) ∩ U) = (atoms(L, ϕ1) ∪ atoms(L, ϕ2)) ∩ U = atoms(L, ϕ) ∩ U .

Case. ϕ = ϕ1 ∨ ϕ2. Then, ψ = reduce(L, ϕ1) ∨ reduce(L, ϕ2). By inversion on the derivation
of ` ϕ, we know that ` ϕ1 and ` ϕ2. Hence, by the i.h., for i = 1, 2, atoms(L, reduce(L, ϕi)) ⊆
atoms(L, ϕi)∩U . Thus, we have, atoms(L, ψ) = atoms(L, reduce(L, ϕ1))∪atoms(L, reduce(L, ϕ2)) ⊆
(atoms(L, ϕ1) ∩ U) ∪ (atoms(L, ϕ2) ∩ U) = (atoms(L, ϕ1) ∪ atoms(L, ϕ2)) ∩ U = atoms(L, ϕ) ∩ U .

Case. ϕ = ∀~x.(c ⊃ ϕ′). Then,

ψ = reduce(L, ϕ) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ′[~ti/~x])}ni=1

ψ′ ← ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′)
return
ψ1 ∧ . . . ∧ ψn ∧ ψ′

By inversion on the given derivation of ` ϕ, we know that there is a χO such that (1) {} ` c : χO,
(2) ~x ⊆ χO, (3) fv(c) ⊆ ~x, and (4) χO ` ϕ′. By Lemma B.7 on (1), χO ⊆ fv(c). From this, (2),
and (3), it follows that ~x = fv(c) = χO. Call this fact (A). Using Lemma B.8 on (4), we get
χO\~x ` ϕ′[~ti/~x]. This and fact (A) imply that ` ϕ′[~ti/~x]. Call this fact (B). By the i.h. on fact (B)
and ψi ← reduce(L, ϕ′[~ti/~x]), we get that atoms(L, ψi) ⊆ atoms(L, ϕ′[~ti/~x])∩U . Call this fact (C).

Next, ŝat(L, (c ∧ ~x 6∈ S)) =
⋃
σ′∈ŝat(L,c)(σ

′ + ŝat(L, σ′(~x) 6∈ S)) =
⋃n
i=1(σi + ŝat(L, ~ti 6∈ S)) =⋃n

i=1(σi + {}) = {}. Hence, by definition, atoms(L, ψ′) = atoms(L,∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′)) = {}.
Call this fact (D).

Also, atoms(L, ϕ) = atoms(L, ∀~x.(c ⊃ ϕ′)) =
⋃
σ∈ŝat(L,c) atoms(L, ϕ′σ) =

⋃n
i=1 atoms(L, ϕ′σi) =⋃n

i=1 atoms(L, ϕ′[~ti/~x]) (the last equality follows from fv(ϕ′) ⊆ ~x, which in turn follows from
fact (B)). Call this fact (E).

Finally, we have,

atoms(L, ψ) = atoms(L, ψ1 ∧ . . . ∧ ψn ∧ ψ′)
= atoms(L, ψ′) ∪ (

⋃n
i=1 atoms(L, ψi)) (Defn. of atoms)

= {} ∪ (
⋃n
i=1 atoms(L, ψi)) (Fact (D))

=
⋃n
i=1 atoms(L, ψi)

⊆
⋃n
i=1(atoms(L, ϕ′[~ti/~x]) ∩ U) (Fact (C))

= (
⋃n
i=1 atoms(L, ϕ′[~ti/~x])) ∩ U

= atoms(L, ϕ) ∩ U (Fact (E))
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Case. ϕ = ∃~x.(c ∧ ϕ′). Then,

ψ = reduce(L, ϕ) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ′[~ti/~x])}ni=1

ψ′ ← ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ′)
return
ψ1 ∨ . . . ∨ ψn ∨ ψ′

By inversion on the given derivation of ` ϕ, we know that there is a χO such that (1) {} ` c : χO,
(2) ~x ⊆ χO, (3) fv(c) ⊆ ~x, and (4) χO ` ϕ′. By Lemma B.7 on (1), χO ⊆ fv(c). From this, (2),
and (3), it follows that ~x = fv(c) = χO. Call this fact (A). Using Lemma B.8 on (4), we get
χO\~x ` ϕ′[~ti/~x]. This and fact (A) imply that ` ϕ′[~ti/~x]. Call this fact (B). By the i.h. on fact (B)
and ψi ← reduce(L, ϕ′[~ti/~x]), we get that atoms(L, ψi) ⊆ atoms(L, ϕ′[~ti/~x])∩U . Call this fact (C).

Next, ŝat(L, (c ∧ ~x 6∈ S)) =
⋃
σ′∈ŝat(L,c)(σ

′ + ŝat(L, σ′(~x) 6∈ S)) =
⋃n
i=1(σi + ŝat(L, ~ti 6∈ S)) =⋃n

i=1(σi + {}) = {}. Hence, by definition, atoms(L, ψ′) = atoms(L, ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ′)) = {}.
Call this fact (D).

Also, atoms(L, ϕ) = atoms(L, ∃~x.(c ∧ ϕ′)) =
⋃
σ∈ŝat(L,c) atoms(L, ϕ′σ) =

⋃n
i=1 atoms(L, ϕ′σi) =⋃n

i=1 atoms(L, ϕ′[~ti/~x]) (the last equality follows from fv(ϕ′) ⊆ ~x, which in turn follows from
fact (B)). Call this fact (E).

Finally, we have,

atoms(L, ψ) = atoms(L, ψ1 ∨ . . . ∨ ψn ∨ ψ′)
= atoms(L, ψ′) ∪ (

⋃n
i=1 atoms(L, ψi)) (Defn. of atoms)

= {} ∪ (
⋃n
i=1 atoms(L, ψi)) (Fact (D))

=
⋃n
i=1 atoms(L, ψi)

⊆
⋃n
i=1(atoms(L, ϕ′[~ti/~x]) ∩ U) (Fact (C))

= (
⋃n
i=1 atoms(L, ϕ′[~ti/~x])) ∩ U

= atoms(L, ϕ) ∩ U (Fact (E))

C Proofs from Section 5

This appendix contains proofs of theorems presented in Section 5.

Lemma C.1. Suppose ψ does not contain any quantifiers or objective atoms. Then, ψ →∗ ψ′ such
that (1) ψ′ is either >, or ⊥, or contains only subjective atoms and the connectives ∧, ∨, and
(2) For all structures L, L |= ψ iff L |= ψ′ and L |= ψ iff L |= ψ′.

Proof. By induction on ψ. If ψ is either >, ⊥, or PS , we can choose ψ′ = ψ.
If ψ = ψ1 ∧ ψ2, then we inductively rewrite both ψ1 and ψ2 to ψ′1 and ψ′2, respectively. Thus,

ψ1 ∧ ψ2 →∗ ψ′1 ∧ ψ′2. If either ψ′1 or ψ′2 equals ⊥, then ψ′1 ∧ ψ′2 → ⊥ and we choose ψ′ = ⊥. If
ψ′1 = >, then ψ′1 ∧ ψ′2 → ψ′2, so we can choose ψ′ = ψ′2. Similarly, if ψ′2 = >, then ψ′1 ∧ ψ′2 → ψ′1, so
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we can choose ψ′ = ψ′1. Finally, if both ψ′1 and ψ′2 contain only subjective atoms and connectives
∧, ∨, then we choose ψ′ = ψ′1 ∧ ψ′2.

The case of ψ = ψ1 ∨ ψ2 is similarly handles. No other cases apply.

Lemma C.2. If L is objectively-complete, then for all restrictions c, either L |= c or L |= c.

Proof. By induction on c.

Lemma C.3. If L is objectively-complete and L′ ≥ L, then for all restrictions c, L′ |= c iff L |= c.

Proof. Suppose L′ ≥ L. Observe that because L is objectively-complete, L′ and L agree on valua-
tion of objective atoms, which are the only atoms in c. The result now follows by a straightforward
induction on c.

Theorem C.4 (Theorem 5.2). Suppose L is objectively-complete, ` ϕ and ψ = reduce(L, ϕ). Then
ψ →∗ ψ′, where (1) ψ′ is either >, or ⊥, or contains only subjective atoms and the connectives ∧,
∨, and (2) For all L′ ≥ L, L′ |= ψ iff L′ |= ψ′ and L′ |= ψ iff L′ |= ψ′.

Proof. By induction on ϕ and case analysis of its form. Define simp(ψ′) to mean statement (1) of
the theorem, i.e., that ψ′ is either >, or ⊥, or contains only subjective atoms and the connectives
∧, ∨. Define equiv(L, ψ, ψ′) to mean statement (2) of the theorem, i.e., for all L′ ≥ L, L′ |= ψ iff
L′ |= ψ′ and L′ |= ψ iff L′ |= ψ′.

Case. ϕ = PO. In this case, ρL(PO) ∈ {tt, ff} and, accordingly, ψ = > or ψ = ⊥. So we can
choose ψ′ = ψ to trivially satisfy both (1) and (2).

Case. ϕ = PS . In this case ψ = > or ψ = ⊥ or ψ = PS . So we can choose ψ′ = ψ to trivially
satisfy both (1) and (2).

Case. ϕ = >. Then, ψ = >. We choose ψ′ = ψ to trivially satisfy both (1) and (2).

Case. ϕ = ⊥. Then, ψ = ⊥. We choose ψ′ = ψ to trivially satisfy both (1) and (2).

Case. ϕ = ϕ1 ∧ ϕ2. Then, ψ = ψ1 ∧ ψ2, where ψi = reduce(L, ϕi) for i = 1, 2. By inver-
sion on the given derivation of ` ϕ, we deduce ` ϕ1 and ` ϕ2. Hence, from the i.h., ψi →∗ ψ′i
where simp(ψ′i) and equiv(L, ψi, ψ′i). The last fact implies that equiv(L, ψ, ψ′1 ∧ ψ′2). Further,
ψ = ψ1 ∧ ψ2 →∗ ψ′1 ∧ ψ′2. Using Lemma C.1, we obtain a ψ′ such that ψ′1 ∧ ψ′2 →∗ ψ′, simp(ψ′)
and equiv(L, ψ′1 ∧ ψ′2, ψ′). The last fact and equiv(L, ψ, ψ′i ∧ ψ′2) imply equiv(L, ψ, ψ′). So ψ′

satisfies all our requirements.

Case. ϕ = ϕ1 ∨ ϕ2. Then, ψ = ψ1 ∨ ψ2, where ψi = reduce(L, ϕi) for i = 1, 2. By inver-
sion on the given derivation of ` ϕ, we deduce ` ϕ1 and ` ϕ2. Hence, from the i.h., ψi →∗ ψ′i
where simp(ψ′i) and equiv(L, ψi, ψ′i). The last fact implies that equiv(L, ψ, ψ′1 ∨ ψ′2). Further,
ψ = ψ1 ∨ ψ2 →∗ ψ′1 ∨ ψ′2. Using Lemma C.1, we obtain a ψ′ such that ψ′1 ∨ ψ′2 →∗ ψ′, simp(ψ′)
and equiv(L, ψ′1 ∨ ψ′2, ψ′). The last fact and equiv(L, ψ, ψ′i ∨ ψ′2) imply equiv(L, ψ, ψ′). So ψ′

satisfies all our requirements.
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Case. ϕ = ∀~x.(c ⊃ ϕ′). Then, ψ is calculated as follows:

ψ = reduce(L, ϕ) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ′[~ti/~x])}ni=1

ψ′′ ← ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′)
return
ψ1 ∧ . . . ∧ ψn ∧ ψ′′

By inversion on the given derivation of ` ϕ, we know that there is a χO such that (1) {} ` c : χO,
(2) ~x ⊆ χO, (3) fv(c) ⊆ ~x, and (4) χO ` ϕ′. By Lemma B.7 on (1), χO ⊆ fv(c). From this, (2),
and (3), it follows that ~x = fv(c) = χO. Call this fact (A). Note also that by Theorem B.6,
dom(σi) ⊇ χO = ~x. Call this fact (B).

Next, we show that equiv(L, ψ′′,>). Since for all L′, L′ |= >, it suffices to show that for all
L′ ≥ L, L′ |= ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′). By definition of |=, it suffices to prove that for all ~t and

L′ ≥ L, L′ |= c[~t/~x] ∧ ~t 6∈ S, i.e., L′ |= c[~t/~x] ∨ ~t ∈ S. If ~t = ~ti for some i, then L′ |= ~t ∈ S by
definition of S, so we are done. Hence, we need only consider the case where ~t 6∈ S. In this case

we show that L′ |= c[~t/~x]. By Lemma C.2, this is implied by L′ 6|= c[~t/~x], so we show the latter.
Suppose, for the sake of contradiction, that L′ |= c[~t/~x]. By Lemma C.3, L |= c[~t/~x]. Hence, by
Theorem B.3, there is a σ ∈ ŝat(L, c) such that [~x 7→ ~t] ≥ σ. σ ∈ ŝat(L, c) forces σ = σi for some
i and, by fact (B), ~t = ~ti. Hence, ~t = ~ti ∈ S, a contradiction. Therefore, equiv(L, ψ′′,>). Call this
fact (C).

By Lemma B.8 on (4), we derive χO\~x ` ϕ′[~t/~x]. Using fact (A), we have ` ϕ′[~t/~x]. Applying
the i.h. to this and ψi ← reduce(L, ϕ′[~ti/~x]), we know that there is a ψ′i such that ψi →∗ ψ′i, simp(ψ′i)
and equiv(L, ψi, ψ′i). Call this fact (D).

Note that ψ = ψ1 ∧ . . . ∧ ψn ∧ ψ′′ →∗ ψ′1 ∧ . . . ∧ ψ′n ∧ > (the second relation follows because
ψ′′ → >). Further, because equiv(L, ψi, ψ′i) (fact (D)) and equiv(L, ψ′′,>) (fact (C)), it follows
that equiv(L, ψ, (ψ′1 ∧ . . . ∧ ψ′n ∧ >)). Also, from fact (C), simp(ψ′1 ∧ . . . ∧ ψ′n ∧ >). The proof is
complete by choosing the ψ′ obtained by applying Lemma C.1 to ψ′1 ∧ . . . ∧ ψ′n ∧ >.

Case. ϕ = ∃~x.(c ∧ ϕ′). Then, ψ is calculated as follows:

ψ = reduce(L, ϕ) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ′[~ti/~x])}ni=1

ψ′′ ← ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ′)
return
ψ1 ∨ . . . ∨ ψn ∨ ψ′′

By inversion on the given derivation of ` ϕ, we know that there is a χO such that (1) {} ` c : χO,
(2) ~x ⊆ χO, (3) fv(c) ⊆ ~x, and (4) χO ` ϕ′. By Lemma B.7 on (1), χO ⊆ fv(c). From this, (2),
and (3), it follows that ~x = fv(c) = χO. Call this fact (A). Note also that by Theorem B.6,
dom(σi) ⊇ χO = ~x. Call this fact (B).
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Next, we show that equiv(L, ψ′′,⊥). Since for all L′, L′ |= ⊥ = >, it suffices to show that for
all L′ ≥ L, L′ |= ∃~x.((c ∧ ~x 6∈ S) ∧ ϕ′), i.e., L′ |= ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′). By definition of |=, it

suffices to prove that for all ~t and L′ ≥ L, L′ |= c[~t/~x] ∧ ~t 6∈ S, i.e., L′ |= c[~t/~x] ∨ ~t ∈ S. If ~t = ~ti for
some i, then L′ |= ~t ∈ S by definition of S, so we are done. Hence, we need only consider the case

where ~t 6∈ S. In this case we show that L′ |= c[~t/~x]. By Lemma C.2, this is implied by L′ 6|= c[~t/~x],
so we show the latter. Suppose, for the sake of contradiction, that L′ |= c[~t/~x]. By Lemma C.3,
L |= c[~t/~x]. Hence, by Theorem B.3, there is a σ ∈ ŝat(L, c) such that [~x 7→ ~t] ≥ σ. σ ∈ ŝat(L, c)
forces σ = σi for some i and, by fact (B), ~t = ~ti. Hence, ~t = ~ti ∈ S, a contradiction. Therefore,
equiv(L, ψ′′,⊥). Call this fact (C).

By Lemma B.8 on (4), we derive χO\~x ` ϕ′[~t/~x]. Using fact (A), we have ` ϕ′[~t/~x]. Applying
the i.h. to this and ψi ← reduce(L, ϕ′[~ti/~x]), we know that there is a ψ′i such that ψi →∗ ψ′i, simp(ψ′i)
and equiv(L, ψi, ψ′i). Call this fact (D).

Note that ψ = ψ1 ∨ . . . ∨ ψn ∨ ψ′′ →∗ ψ′1 ∨ . . . ∨ ψ′n ∨ ⊥ (the second relation follows because
ψ′′ → ⊥). Further, because equiv(L, ψi, ψ′i) (fact (D)) and equiv(L, ψ′′,⊥) (fact (C)), it follows
that equiv(L, ψ, (ψ′1 ∨ . . . ∨ ψ′n ∨ ⊥)). Also, from fact (C), simp(ψ′1 ∨ . . . ∨ ψ′n ∨ ⊥). The proof is
complete by choosing the ψ′ obtained by applying Lemma C.1 to ψ′1 ∨ . . . ∨ ψ′n ∨ ⊥.

Next, we turn to proofs of Theorems 5.4 and 5.5. Both theorems rely on a central lemma
(Lemma C.11). In order to prove the lemma cleanly, we need a few definitions and some other
lemmas. Note that in the rest of this Appendix we assume that there are no subjective predicates.

Definition C.5 (Protected restrictions). Let T be a set of time points (possibly non-ground). We
define a subclass “T -protected” of restrictions c of the sublogic inductively as follows:

1. pO(t1, . . . , tn, τ0) is T -protected if τ0 ∈ T

2. ~x 6∈ S is T -protected

3. τ 6= τ ′ is T -protected

4. in(τ, τ ′, τ0) is T -protected if τ0 ∈ T

5. > is T -protected

6. ⊥ is T -protected

7. c1 ∧ c2 is T -protected if both c1 and c2 are T -protected.

8. c1 ∨ c2 is T -protected if both c1 and c2 are T -protected.

9. ∃x.c is T -protected if c is T -protected.

Definition C.6 (Protected formulas). Let T be a set of time points (possibly non-ground). We
define a subclass “T -protected” of formulas ϕ of the sublogic inductively as follows:

1. pO(t1, . . . , tn, τ0) is T -protected if τ0 ∈ T

2. > is T -protected

3. ⊥ is T -protected
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4. ϕ1 ∧ ϕ2 is T -protected if both ϕ1 and ϕ2 are T -protected

5. ϕ1 ∨ ϕ2 is T -protected if both ϕ1 and ϕ2 are T -protected

6. ∀~x.(c ⊃ ϕ) is T -protected if c is T -protected and ϕ is T -protected

7. ∀τ.((in(τ, τ ′, τ0) ∧ c) ⊃ ϕ) is T -protected if c is T -protected, τ0 ∈ T , and ϕ is (T ∪ {τ})-
protected

8. ∃~x.(c ∧ ϕ) is T -protected if c is T -protected and ϕ is T -protected

9. ∃τ.((in(τ, τ ′, τ0) ∧ c) ∧ ϕ) is T -protected if c is T -protected, τ0 ∈ T , and ϕ is (T ∪ {τ})-
protected

Lemma C.7 (Excluded middle for protected formulas). Let T , τ0 be ground. Suppose L is τ0-
complete and for all τ ∈ T , τ ≤ τ0. Then, the following hold.

1. If c is ground and T -protected, then either L |= c or L |= c.

2. If ϕ is ground and T -protected, then either L |= ϕ or L |= ϕ.

Proof. Both statements follow by an induction on the respective definitions of T -protected. We
show some representative cases below.

Proof of (1).

Case. c = pO(t1, . . . , tn, τ) and τ ∈ T . By definition of τ0-complete and the fact τ ≤ τ0, we
know that either ρL(pO(t1, . . . , tn, τ)) = tt or ρL(pO(t1, . . . , tn, τ)) = ff. In the former case,
L |= pO(t1, . . . , tn, τ), while in the latter case, L |= pO(t1, . . . , tn, τ).

Case. c = c1 ∧ c2 and both c1 and c2 are T -protected. By the i.h., for each i, either L |= ci or
L |= ci. If L |= c1 and L |= c2, then L |= c1 ∧ c2, as required. If, on the other hand, for some i,
L |= ci, then L |= c1 ∨ c2, i.e., L |= c.

Case. c = ∃x.c and c is T -protected. By the i.h., for every t, either L |= c[t/x] or L |= c[t/x]. If
there is a t such that L |= c[t/x], then also L |= ∃x.c. If, on the other hand, for every t, L |= c[t/x],
then also, L |= ∀x.c, i.e., L |= ∃x.c.

Proof of (2).

Case. ϕ = ∀~x.(c ⊃ ϕ′) where c is T -protected and ϕ′ is T -protected. If for any ~t, L |= c[~t/~x] and
L |= ϕ′[~t/~x], then, by definition, L |= ∃~x.(c ∧ ϕ′), i.e., L |= ϕ and we are done. Hence, we need
only consider the case where for every ~t, either L 6|= c[~t/~x] or L 6|= ϕ′[~t/~x]. However, by (1) and the
i.h., we also deduce in this case that for every ~t, either L |= c[~t/~x] or L |= ϕ′[~t/~x]. By definition of
|=, L |= ϕ in this case.

Case. ∀τ.((in(τ, τ ′, τ1) ∧ c) ⊃ ϕ′) where c is T -protected, τ1 ∈ T , and ϕ′ is (T ∪ {τ})-protected.
We consider two exhaustive subcases:
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Subcase. There is a ground τ ′′ such that L |= in(τ ′′, τ ′, τ1), L |= c[τ ′′/τ ] and L |= ϕ′[τ ′′/τ ]. By
definition of |=, L |= ∃τ.((in(τ ′′, τ ′, τ1) ∧ c) ∧ ϕ′), i.e., L |= ϕ.

Subcase. For every ground τ ′′, either L 6|= in(τ ′′, τ ′, τ1), or L 6|= c[τ ′′/τ ], or L 6|= ϕ′[τ ′′/τ ]. In this
case we show that L |= ϕ. Following the definition of |=, pick any τ ′′. It suffices to prove that either
L |= in(τ ′′, τ ′, τ1) or L |= c[τ ′′/τ ] or L |= ϕ′[τ ′′/τ ]. From the subcase assumption, L 6|= in(τ ′′, τ ′, τ1),
or L 6|= c[τ ′′/τ ], or L 6|= ϕ′[τ ′′/τ ]. If L 6|= in(τ ′′, τ ′, τ1), then because in(τ ′′, τ ′, τ1) is T -protected
(note that τ1 ∈ T ), (1) implies that L |= in(τ ′′, τ ′, τ1). The case L 6|= c[τ ′′/τ ] is similar. That
leaves only the last case: L 6|= ϕ′[τ ′′/τ ]. Since ϕ′ is (T ∪ {τ})-protected, ϕ′[τ ′′/τ ] is (T ∪ {τ ′′})-
protected. Further, because we already considered the case L 6|= in(τ ′′, τ ′, τ1), we may assume here
that L |= in(τ ′′, τ ′, τ1), which implies τ ′′ ≤ τ1 ≤ τ0. Thus, we can apply the i.h. to ϕ′[τ ′′/τ ] to
deduce that either L |= ϕ′[τ ′′/τ ] or L |= ϕ′[τ ′′/τ ]. The latter is assumed to be false, so we must
have L |= ϕ′[τ ′′/τ ], as required.

Lemma C.8 (Reduction of protected formulas). Let T , τ0 be ground. Suppose ϕ is T -protected,
` ϕ, L is τ0-complete, and for all τ ∈ T , τ ≤ τ0. Then, reduce(L, ϕ)→∗ ψ, where ψ = > or ψ = ⊥
and L |= ϕ iff L |= ψ.

Proof. By induction on the derivation of ϕ being T -protected. The proof is very similar to that of
Theorem C.4 and we show here only some representative cases of the induction.

Case. ϕ = pO(t1, . . . , tn, τ) where τ ∈ T . Because L is τ0-complete and τ ≤ τ0, we know
that ρL(pO(t1, . . . , tn, τ)) ∈ tt, ff. Accordingly, reduce(L, ϕ) ∈ {>,⊥}, so we can choose ψ =
reduce(L, ϕ) to satisfy the theorem’s requirements.

Case. ϕ = ∀~x.(c ⊃ ϕ′) where c and ϕ′ are both T -protected. Then, reduce(L, ϕ) is calculated as
follows.

reduce(L, ϕ) = let
{σ1, . . . , σn} ← ŝat(L, c)
{~ti ← σi(~x)}ni=1

S ← {~t1, . . . , ~tn}
{ψi ← reduce(L, ϕ′[~ti/~x])}ni=1

ψ′ ← ∀~x.((c ∧ ~x 6∈ S) ⊃ ϕ′)
return
ψ1 ∧ . . . ∧ ψn ∧ ψ′

By inversion on the given derivation of ` ϕ, we know that there is a χO such that (1) {} ` c : χO,
(2) ~x ⊆ χO, (3) fv(c) ⊆ ~x, and (4) χO ` ϕ′. By Lemma B.7 on (1), χO ⊆ fv(c). From this, (2),
and (3), it follows that ~x = fv(c) = χO. Call this fact (A). Note also that by Theorem B.6,
dom(σi) ⊇ χO = ~x. Call this fact (B).

Next, we show that L |= ψ′. Following the definition of |=, it suffices to prove that for all ~t,

L |= c[~t/~x] ∧ ~t 6∈ S, i.e., either L |= c[~t/~x] or ~t ∈ S. Suppose ~t 6∈ S. Then, we show that L |= c[~t/~x].
Because c is T -protected, Lemma C.7(1) applies, so the last fact is implied by L 6|= c[~t/~x]. So we
prove this instead. Suppose, for the sake of contradiction, that L |= c[~t/~x]. Then, by Theorem B.3,
there is a σ ∈ ŝat(L, c) such that [~x 7→ ~t] ≥ σ. σ ∈ ŝat(L, c) forces σ = σi for some i and, by
fact (B), ~t = ~ti. Hence, ~t = ~ti ∈ S, a contradiction. Hence, we must have L |= ψ′. Call this fact (C).

45



By Lemma B.8 on (4), we derive χO\~x ` ϕ′[~t/~x]. Using fact (A), we have ` ϕ′[~t/~x]. We already
know that ϕ′ is T -protected and, hence, ϕ′[~t/~x] is also T -protected. Applying the i.h. to the last
two facts, and ψi ← reduce(L, ϕ′[~ti/~x]), we know that there is a ψ′i ∈ {>,⊥} such that ψi →∗ ψ′i
and L |= ϕ′[~ti/~x] iff L |= ψ′i. Note that by Theorem B.5, this also implies L |= ψi iff L |= ψ′i. Call
this fact (D). We consider two subcases:

Subcase. For every i, ψ′i = >. Clearly, we have reduce(L, ϕ) = (ψ1 ∧ . . . ∧ ψn ∧ ψ′) →∗ >
(note: ψ′ → >). We must show that L |= ϕ. We have by fact (D) that L |= ψi for each i and by
fact (C) that L |= ψ′. Consequently, L |= (ψ1 ∧ . . . ∧ ψn ∧ ψ′) and, hence, by Theorem B.5, L |= ϕ.

Subcase. There is a i such that ψ′i = ⊥. Clearly, we have reduce(L, ϕ) = (. . . ∧ ψi ∧ . . .) →∗ ⊥.
We must show that L 6|= ϕ. Note that by fact (D), L 6|= ψi. Consequently, by definition of |=,
L 6|= reduce(L, ϕ) and, hence, by Theorem B.5, L 6|= ϕ, as required.

Case. ϕ = ∀x.((in(x, τ ′, τ) ∧ c) ⊃ ϕ′) where c is T -protected, τ ∈ T , and ϕ′ is (T ∪{x})-protected.
Then, reduce(L, ϕ) is calculated as follows.

reduce(L, ϕ) = let
{σ1, . . . , σn} ← ŝat(L, (in(x, τ ′, τ) ∧ c))
{τi ← σi(x)}ni=1

S ← {τ1, . . . , τn}
{ψi ← reduce(L, ϕ′[τi/x])}ni=1

ψ′ ← ∀x.((in(x, τ ′, τ) ∧ c ∧ x 6∈ S) ⊃ ϕ′)
return
ψ1 ∧ . . . ∧ ψn ∧ ψ′

By inversion on the given derivation of ` ϕ, we know that there is a χO such that (1) {} `
in(x, τ ′, τ) ∧ c : χO, (2) {x} ⊆ χO, (3) fv(in(x, τ ′, τ) ∧ c) ⊆ {x}, and (4) χO ` ϕ′. By Lemma B.7
on (1), χO ⊆ fv(in(x, τ ′, τ) ∧ c). From this, (2), and (3), it follows that {x} = fv(in(x, τ ′, τ) ∧
c) = χO. Call this fact (A). Note also that by Theorem B.6, dom(σi) ⊇ χO = {x}. Call this fact (B).

Next, we show that L |= ψ′. Following the definition of |=, it suffices to prove that for all t,
L |= in(t, τ ′, τ) ∧ c[t/x] ∧ t 6∈ S, i.e., either L |= in(t, τ ′, τ) ∧ c[t/x] or t ∈ S. Suppose t 6∈ S. Then,
we show that L |= in(t, τ ′, τ) ∧ c[t/x]. Because in(t, τ ′, τ) ∧ c[t/x] is T -protected, Lemma C.7(1)
applies, so the last fact is implied by L 6|= in(t, τ ′, τ) ∧ c[t/x]. So we prove this instead. Suppose,
for the sake of contradiction, that L |= in(t, τ ′, τ) ∧ c[t/x]. Then, by Theorem B.3, there is a
σ ∈ ŝat(L, in(x, τ ′, τ) ∧ c) such that [x 7→ t] ≥ σ. σ ∈ ŝat(L, in(x, τ ′, τ) ∧ c) forces σ = σi for
some i and, by fact (B), t = τi. Hence, t = τi ∈ S, a contradiction. Hence, we must have L |= ψ′.
Call this fact (C).

By Lemma B.8 on (4), we derive χO\{x} ` ϕ′[τi/x]. Using fact (A), we have ` ϕ′[τi/x]. We
already know that ϕ′ is (T ∪ {x})-protected and, hence, ϕ′[τi/x] is (T ∪ {τi})-protected. Note
also that τi ≤ τ ≤ τ0. Applying the i.h. to the last three facts, and ψi ← reduce(L, ϕ′[τi/x]), we
know that there is a ψ′i ∈ {>,⊥} such that ψi →∗ ψ′i and L |= ϕ′[τi/x] iff L |= ψ′i. Note that by
Theorem B.5, this also implies L |= ψi iff L |= ψ′i. Call this fact (D). We consider two subcases:

Subcase. For every i, ψ′i = >. Clearly, we have reduce(L, ϕ) = (ψ1 ∧ . . . ∧ ψn ∧ ψ′) →∗ >
(note: ψ′ → >). We must show that L |= ϕ. We have by fact (D) that L |= ψi for each i and by
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fact (C) that L |= ψ′. Consequently, L |= (ψ1 ∧ . . . ∧ ψn ∧ ψ′) and, hence, by Theorem B.5, L |= ϕ.

Subcase. There is a i such that ψ′i = ⊥. Clearly, we have reduce(L, ϕ) = (. . . ∧ ψi ∧ . . .) →∗ ⊥.
We must show that L 6|= ϕ. Note that by fact (D), L 6|= ψi. Consequently, by definition of |=,
L 6|= reduce(L, ϕ) and, hence, by Theorem B.5, L 6|= ϕ, as required.

Lemma C.9 (Duality of protection). ϕ is T -protected iff ϕ is T -protected.

Proof. By a straightforward induction on ϕ.

Lemma C.10 (Past translation). The following hold:

1. If c is a restriction in the temporal logic, then for any τ ∈ T , (c)τ is T -protected.

2. If αp is a temporal logic formula without future operators, then for any τ ∈ T , (αp)
τ is

T -protected.

Proof. (1) follows by a straightforward induction on c. Then, (2) follows by induction on αp. The
case αp = pS(t1, . . . , tn) does not arise because we assume that there are no subjective predicates.
Similarly, the cases αp = 0β and αp = β1 Uβ2 do not arise because αp does not contain future
operators. We show some other representative cases below.

Case. αp = pO(t1, . . . , tn). Then, (αp)
τ = pO(t1, . . . , tn, τ), which is T -protected because τ ∈ T is

given.

Case. αp = ¬α′p. Then, (αp)
τ = (α′p)

τ . By the i.h., (α′p)
τ is T -protected. Hence, by Lemma C.9,

(α′p)
τ is also T -protected.

Case. αp = ∀~x.(c ⊃ βp). Then, (αp)
τ = ∀~x.((c)τ ⊃ (βp)

τ ). By statement (1) of the theorem, (c)τ

is T -protected, and by the i.h., (βp)
τ is T -protected. Hence, (αp)

τ is T -protected by clause (6) of
Defn C.6.

Case. αp = ↓x.βp. Then, (αp)
τ = (βp[τ/x])τ . By the i.h. on the smaller formula βp[τ/x], we get

that (βp[τ/x])τ is T -protected.

Case. αp = β1 Sβ2. Then, (αp)
τ = ∃τ ′.(in(τ ′, 0, τ) ∧ (β2)

τ ′ ∧ (∀τ ′′.((in(τ ′′, τ ′, τ) ∧ τ ′ 6= τ ′′) ⊃
(β1)

τ ′′))). First, by the i.h., (β1)
τ ′′ is (T ∪{τ ′′})-protected. Consequently, by clause (7) of Defn C.6,

(∀τ ′′.((in(τ ′′, τ ′, τ) ∧ τ ′ 6= τ ′′) ⊃ (β1)
τ ′′)) is T -protected. Hence, it is also (T ∪ {τ ′})-protected.

Call this fact (A). Next, by the i.h., (β2)
τ ′ is (T ∪{τ ′})-protected. Combining this and fact (A), we

have that (β2)
τ ′ ∧ (∀τ ′′.((in(τ ′′, τ ′, τ) ∧ τ ′ 6= τ ′′) ⊃ (β1)

τ ′′)) is (T ∪ {τ ′})-protected. By clause (9)
of Defn C.6, (αp)

τ is T -protected, as required.

Case. αp = `βp. Then, (αp)
τ = ∀τ ′.(in(τ ′, τ,∞) ⊃ (βp)

τ ′). By the i.h., (βp)
τ ′ is (T ∪ {τ ′})-

protected. Hence, by clause (7) of Defn C.6, (αp)
τ is T -protected.

Lemma C.11 (Reduction of past formulas). Let αp be a temporal logic formula without future
operators, and suppose that τ is a ground time point such that ` (αp)

τ . Let L be τ0-complete and
τ0 ≥ τ . Then, either (1) reduce(L, (αp)τ )→∗ > and L |= (αp)

τ , or (2) reduce(L, (αp)τ )→∗ ⊥ and

L |= (αp)τ .
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Proof. By Lemma C.10(2), (αp)
τ is {τ}-protected. Because τ ≤ τ0 and ` (αp)

τ , by Lemma C.8,
reduce(L, (αp)τ ) →∗ ψ, where ψ = > or ψ = ⊥ and L |= (αp)

τ iff L |= ψ. Call the latter fact (A).
We consider two cases:

Case. ψ = >. In this case, fact (A) means that L |= (αp)
τ iff L |= >, which implies that L |= (αp)

τ .
So (1) holds.

Case. ψ = ⊥. In this case, fact (A) yields that L 6|= (αp)
τ . Since (αp)

τ is {τ}-protected (already

proved) and τ ≤ τ0, Lemma C.7(2) yields L |= (αp)τ . So (2) holds.

Theorem C.12 (Enforcement of safety properties; Theorem 5.4). Suppose Gαp is a safety prop-
erty, ` Gαp, L is τ0-complete, and for all τ , (ρL(in(τ, 0,∞)) = tt) ⇒ τ ≤ τ0. Then,

reduce(L,Gαp)→∗ ⊥ iff there is a τ such that L |= in(τ, 0, τ0) and L |= (αp)τ .

Proof. We have Gαp = ∀τ.(in(τ, 0,∞) ⊃ (αp)
τ ). Let reduce(L,Gαp) = ψ. Then,

ψ = reduce(L, ∀τ.(in(τ, 0,∞) ⊃ (αp)
τ )) = let

{σ1, . . . , σn} ← ŝat(L, in(τ, 0,∞))
{τi ← σi(τ)}ni=1

S ← {τ1, . . . , τn}
{ψi ← reduce(L, (αp)τi)}ni=1

ψ′ ← ∀τ.((in(τ, 0,∞) ∧ τ 6∈ S) ⊃ (αp)
τ )

return
ψ1 ∧ . . . ∧ ψn ∧ ψ′

By inversion on ` Gαp, we obtain a χO such that ` in(τ, 0,∞) : χO and χO ` (αp)
τ . The first

of these forces χO = {τ}, so from the second one we have that τ ` (αp)
τ . Using Lemma B.8(2), we

get ` (αp)
τi . Call this fact (A). Next, observe that by Theorem B.3, for each τi, L |= in(τi, 0,∞),

i.e., ρL(in(τi, 0,∞)) = tt. This forces τi ≤ τ0 from the assumptions of the theorem we are trying
to prove. Call this fact (B). We now prove the two directions of the conclusion of the theorem.

Direction “if”. Suppose there is a τ with L |= in(τ, 0, τ0) and L |= (αp)τ . We prove that
ψ →∗ ⊥. By Theorem B.3 applied to L |= in(τ, 0, τ0), τ = τi for some i. Hence by Lemma C.11,
using facts (A) and (B) and L |= (αp)τ , we have that reduce(L, (αp)τi)→∗ ⊥, i.e., ψi →∗ ⊥. Clearly,
ψ = (. . . ∧ ψi ∧ . . .)→∗ ⊥, as required.

Direction “only if”. Suppose that reduce(L,Gαp) →∗ ⊥, i.e., ψ →∗ ⊥. We show that there is

a τ such that in(τ, 0, τ0) and L |= (αp)τ . By definition of →, we obtain that either for some i,
ψi →∗ ⊥ or ψ′ →∗ ⊥. The latter is impossible because ψ′ has a top-level ∀, which can only be
rewritten to >. Hence, there is an i such that ψi →∗ ⊥, i.e., reduce(L, (αp)τi)→∗ ⊥. Choose τ = τi.

By Lemma C.11, using facts (A) and (B) and reduce(L, (αp)τi) →∗ ⊥, we obtain that L |= (αp)τi .
The remaining requirement, L |= in(τi, 0, τ0) follows from fact (B).

Theorem C.13 (Enforcement of co-safety properties; Theorem 5.5). Suppose Fαp is a co-safety
property, ` Fαp, L is τ0-complete, and for all τ , (ρL(in(τ, 0,∞)) = tt) ⇒ τ ≤ τ0. Then,
reduce(L,Fαp)→∗ > if and only if there is a τ such that L |= in(τ, 0, τ0) and L |= (αp)

τ .

Proof. Similar to that of Theorem C.12.
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D HIPAA Case study

This appendix lists the number of subjective and objective atoms in each transmission-related
clause in the HIPAA Privacy Rule. #S denotes the number of subjective atoms; #O’ denotes the
number of such subjective atoms that can be mechanized by a small amount of design effort; and
#O denotes the number of objective atoms. The table is sorted by the last column (#O’ + #O)
/ (#S + #O).

Clause No. #S #O’ #O (#O’ + #O) / (#S + #O)

164.502(e)(1)(ii)(B) 0 0 5 1.00
164.502(a)(1)(i) 1 1 3 1.00
164.502(a)(1)(iv) 37 37 4 1.00
164.502(d)(1) 2 2 2 1.00
164.502(e)(1)(i) 1 1 2 1.00
164.508(a)(2) 37 37 4 1.00
164.508(a)(3)(i) 38 38 4 1.00
164.508(a)(3)(i)(A) 2 2 3 1.00
164.510(a)(1)(ii) 2 2 3 1.00
164.510(a)(2) 2 2 2 1.00
164.512(c)(2) 1 1 0 1.00
164.512(e)(1)(i) 3 3 4 1.00
164.512(e)(1)(ii) 9 9 4 1.00
164.512(e)(1)(vi) 4 4 2 1.00
164.512(f)(2) 10 10 3 1.00
164.512(f)(3)(i) 6 6 4 1.00
164.514(e)(1) 25 25 1 1.00
164.512(j)(3) 11 10 1 0.92
164.524(b)(2)(i) 54 43 41 0.88
164.524(b)(2)(ii) 53 42 42 0.88
164.512(g)(1) 4 3 4 0.88
164.510(b)(1)(i) 2 1 5 0.86
164.502(e)(1)(ii)(C) 3 2 3 0.83
164.506(c)(5) 8 6 4 0.83
164.512(b)(1)(v) 5 3 7 0.83
164.512(k)(1)(iii) 3 2 3 0.83
164.514(f)(1) 3 2 3 0.83
164.502(g)(3)(ii)(A) 2 1 4 0.83
164.502(g)(3)(ii)(B) 2 1 4 0.83
164.502(j)(2) 2 1 4 0.83
164.512(b)(1)(ii) 3 2 3 0.83
164.512(f)(5) 4 3 2 0.83
164.512(k)(1)(i) 2 1 4 0.83
164.512(k)(1)(iv) 2 1 4 0.83
164.512(k)(6)(i) 3 2 3 0.83
164.512(k)(6)(ii) 7 5 4 0.82
164.512(i)(1) 20 15 6 0.81
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164.506(c)(3) 2 1 3 0.80
164.512(b)(1)(iii) 3 2 2 0.80
164.512(h) 2 1 3 0.80
164.512(k)(1)(ii) 4 3 1 0.80
164.512(g)(2) 4 2 5 0.78
164.512(d)(1) 6 4 3 0.78
164.502(a)(2)(ii) 2 1 2 0.75
164.506(c)(2) 2 1 2 0.75
164.510(b)(1)(ii) 4 2 4 0.75
164.512(b)(1)(iv) 3 2 1 0.75
164.510(b)(2) 5 3 3 0.75
164.512(f)(1)(i) 17 10 10 0.74
164.506(c)(4) 6 3 4 0.70
164.502(e)(1)(ii)(A) 1 0 2 0.67
164.506(b)(1) 1 0 2 0.67
164.506(c)(1) 4 2 2 0.67
164.512(f)(6)(i) 4 2 2 0.67
164.502(b)(1) 2 1 1 0.67
164.502(j)(1) 5 1 7 0.67
164.512(a)(1) 2 1 1 0.67
164.512(f)(1)(ii) 7 4 2 0.67
164.512(f)(4) 3 1 3 0.67
164.512(j)(1)(ii)(A) 18 11 3 0.67
164.512(l) 2 1 1 0.67
164.512(k)(4) 4 1 3 0.57
164.512(k)(3) 5 2 2 0.57
164.512(b)(1)(i) 6 1 5 0.55
164.502(b)(2)(i) 1 0 1 0.50
164.508(a)(2)(i)(B) 1 0 1 0.50
164.508(a)(2)(i)(C) 1 0 1 0.50
164.508(a)(3)(i)(B) 1 0 1 0.50
164.510(a)(3)(ii) 3 1 1 0.50
164.512(j)(1)(ii)(B) 4 1 2 0.50
164.512(k)(5)(i) 8 2 3 0.45
164.512(k)(2) 4 1 1 0.40
164.510(b)(4) 12 3 2 0.36
164.512(c)(1) 10 1 4 0.36
164.512(f)(3)(ii) 9 1 3 0.33
164.512(j)(1)(i) 5 1 1 0.33
164.514(g) 9 1 2 0.27
164.510(b)(3) 4 1 0 0.25
164.502(a)(1)(iii) 1 0 0 0.00
164.510(a)(3)(i) 4 0 0 0.00
164.512(c)(2)(i) 1 0 0 0.00
164.512(f)(6)(ii) 1 0 0 0.00

50



164.512(j)(2)(i) 1 0 0 0.00
164.512(j)(2)(ii) 1 0 0 0.00

Total 578 402 303 0.80

Clause No. #S #S’ #O (#S’ + #O) / (#S + #O)
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